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Abstract

We extended the mesoscopic simulation method Dissipative Particle Dynamics to
incorporate chemical reactions on the basis of rate equations. With the extended
model, we analyzed micellar systems in the context of early life and artificial proto-
cells. We studied whether micelles have the potential to serve as embodiments for
protocells, i. e. whether they are able to grow in size and divide into two daughter
cells. It was found that the ability of micelles to grow depends on the pathway new
surfactants are provided: micelles grow only if new surfactants are provided faster
than the monomers dissociate from the assembly. We compared the growth scenario
of two distinct scenarios that envision micelles as protocells: the origin of life theory
“Lipid World” and the currently explored artificial protocell “Los Alamos bug”. We
found that relaxation in micellar kinetics is likely to jeopardize the pathway proposed
by the Lipid World theory, but not the “Los Alamos bug”. We finally developed a
toy model that delineates the whole life-cycle of the “Los Alamos bug”.

Key words: dissipative particle dynamics, artificial life, origin of life, micelles,
artificial protocell, Lipid World, Los Alamos bug
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Chapter 1

Introduction

Despite a long history of scientific tinkering, the transition from nonliving to living
matter is still a poorly understood phenomenon. The obstacles in understanding
the processes that lead to nowadays or even the very first organisms are manifold:
contemporary life is far too sophisticated to give insight into its very origin; no fossil
remnants of this origin can be found on todays earth; and last but not least, the single
implementation of life as we know it makes it hard if not impossible to distinguish
between generic and singular properties of this transition. Surely, whichever way
had been taken towards nowadays organisms, a wide range of intermediate systems
of increasing organizational complexity must have been passed, and no particular
step on this path can be singled out as the exact boundary between nonliving and
living matter.
One of the major steps in the evolution of early life was the emergence of cellular
organisms, i. e. the transition from loose chemical reaction networks in a premordial
soup to embodied entities. There is evidence that encapsulation of chemcial reactions
increases the achievable complexity in prebiotic reaction systems, e. g. by allowing
for spatial heterogeneity and interface processes [1]. Furthermore, encapsulation is a
necessity for reaching basic autonomy. The importance of encapsulation in the early
evolution of life has already been pointed out in the 1930s by Aleksandr I. Oparin,
whose scenario of the origin of life is based on the coacervation or self-aggregation
of lipids to supramolecular assemblies:

“At first there were the simple solutions of organic substances, the behav-
ior of which was governed by the properties of their component atoms
and the arrangement of those atoms in the molecular structure. But
gradually, as the result of growth and increased complexity of the mole-
cules, new properties have come into being and a new colloidal-chemical
order was imposed on the more simple organic chemical relations. These
newer properties were determined by the spatial arrangement and mu-
tual relationship of the molecules. . . In this process biological orderliness
already comes into prominence. Competition, speed of growth, strug-
gle for existence and, finally, natural selection determined such a form
of material organization which is characteristic of living things of the
present time.” [2]

All nowaday organisms are encapsulated in phospholipid membranes with embedded
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Chapter 1. Introduction

proteins. However, in its actual composition, these membranes are far too complex to
serve as potential embodiments for the very origin of cellular life. One of the involved
problems is for example, that a lipid membrane prohibits the supply of nutrients from
the environment unless it contains pore proteins to regulate the diffusion of resources
through the membrane. However, it seems unlikely that such sophisticated molecules
as pore proteins have been present in the very first organism. Therefore, alternative
ways of encapsulation—namely oil droplets and micelles—have been proposed as
intermediate steps towards more sophisticated cells.
In this work, we examine whether micelles are applicable as protocellular containers.
To serve as container of a protocell which is able to reproduce itself, micelles must
be able to grow and—when their size reaches a certain threshold—divide into two
daughter micelles. The growth of micellar aggregates by catalytic reactions has been
experimentally studied by Pascale A. Bachmann, Pier L. Luisi and Jacque Lang [3]
and has later achieved theoretical support [4]. Less attention has been payed to
the actual division of a micellar protocell. In this work, we focus on the kinetics
of micellar systems using dissipative particle dynamics—a mesoscopic simulation
technique of the family of coarse grained molecular dynamics.
We will apply our model to two different systems, where micelles are envisioned
to play the role of a protocellular containers. The first one is the so-called Lipid
World scenario which has been introduced into the debate on the origin of life by
Doron Lancet and co-workers. The second is the Los Alamos bug designed by Steen
Rasmussen et al. as an attempt to create an artificial protocell.

The document is structured as follows: in the remainder of this chapter, we in-
troduce the protocellular scenarios we aim to model—we ouline the general scenario
and the work done so far.
Chapter 2 summarizes properties of micellar systems known from experiments and
theories. These properties are obtained from equilibrium systems. However, the
knwoledge we present is also valuable for the non-equilibrium cases, that we describe.
The model used in this study—Dissipative Particle Dynamics—is described in chap-
ter 3. We give a general introduction of the method, discuss its relation to micro-
scopic (atomistic) as well as macroscopic (continuous) models, as well as its meso-
scopic (thermodynamic) properties. We describe how we extended the standard
formalism to incorporate chemical reactions. Former applications of the method are
briefly presented in section 3.6.
In chapter 4, we present the results of four different scenarios, that we have analyzed
in this work. In section 4.1, we studied a pure aqueous system. We performed these
simulation to validate the method and gain insight into the simulation, that is used
in the latter. In section 4.2, we studied a single component micellar system. We show
how the method can be related to physical length and time scales of the system and
present results for the equilibrium scenario. We further present results for a scenario,
where a chemical reaction is introduced to drive the system out of its equilibrium.
4.3 summarizes results of modelling the Lipid World with several parameter sets. In
4.4 perform simulations on several aspects of the Los Alamos bug.
The above results will be discussed in chapter 4. We discuss artefacts of the model
and how they affect the outcome of our simulations. We compare the growth sce-
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1.1. The Lipid World

narios of the Lipid World and the Los Alamos bug. We will come to the conclusion,
that only the scenario implemented by the Los Alamos bug is likely to allow micelles
to serve as protocellular containers.

1.1 The Lipid World

One proposal to overcome the gap between simple autocatalytic reactions and the
higher ordered organization of early cellular life has been introduced by Doron Lancet
and Daniel Segré in the early 1980s. In the so-called Lipid World Scenario, am-
phiphilic molecules themself—the building blocks of micelles and membranes—are
subject to evolutionary selection and therefore have a hereditary potential. They
actually play the role of a preliminary genome before intricate biopolymer templates
like RNA emerged.
In the theory of Lancet, proto-organisms are supramolecular assemblies of a variaty
of different amphiphiles. These assemblies are located in a premordial soup of pre-
cursor molecules that can synthesize into new amphiphiles. Assemblies are supposed
to undergo a replication-like behavior: in the scenario of Lancet et al. they grow by
the incorporation of new synthesized amphiphiles, until they reach a critical size,
bezond which they are supposed to become unstable and divide into two smaller
aggregates. Although the theory of Lancet et al. is in principle not restricted to a
certain type of assembly, micelles are envisioned to be the aggregates of choice for
this early biotic scenario.
Based on experimental results (see [3], [5], as well as references therein), Lancet
and co-workers assume, that many amphiphiles are able to possess auto- and cross-
catalytic activity for the synthesis of new amphiphiles. They call these amphiphiles
lipozymes in imitation of the terms enzymes and ribozymes. Auto- and cross-catalytic
lipozymes finally form a catalytic network, in which catalytic cycles can compete for
precursor molecules. In this way catalytic cycles become subject of an evolutionary
selection process:

“We propose that crucial steps in the origin of life might have been car-
ried out by lipid-like molecules alone, potentially prior to the emergence
of polynucleic acids and polypeptides. We suggest that heterogeneous
autocatalytic lipozymes with defined internal compositions might have
been gradually selected out of an initial highly complex repertoire of
micelles and vesicles formed spontaneously by abiotic processes.” [5]

Segré and Lancet developed a mathematical model to back up their hypothesis of
possible evolution in such catalytic micellar systems [6, 7, 8]. The Graded Autocatal-
ysis Replication Domain (GARD) model consists a set of NG amphiphiles, that can
be synthesized from an unlimited precurser supply. Amphiphiles are organized in
micelles, that are composed of ni molecules of type i where i = 1, . . . , NG (see figure
1.1). In the GARD model, however, the micelles are only represented as multisets
over {1, . . . , NG}, that is, only the composition of the micelles is modeled, not their
spatial configuration. The micelles grow by the incorporation of amphiphiles whose
synthesese are catalyzed by the present amphiphiles in the micelles (βij in figure
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Chapter 1. Introduction

Figure 1.1: In the GARD model of the Lipid World, micelles are composed of many
different amphiphiles. The different head groups of the amphiphiles act as catalysts
for the creation of other amphiphiles from an external supply of precursor. New
synthesized amphiphiles are supposed to enter the assembly that grows to critical
size where it divides into two daughter aggregates [9].

1.1). Segré and Lancet assume that a micelle splits into two daughter assemblies,
once a critical size N has been reached. To keep the model simple, the authors
observe only the evolutionary path of the micelle that reproduces fastest—once a
micelle divides, its daughters replace the former generation. This generation cycle
introduces a selective pressure in the model.

Segré and Lancet could show that for the case NG � N an initially homogeneous
amphiphile distribution is rapidely biased by this selective pressure, i. e. catalytic
cycles reduce the number of amphiphiles present in the micelle. They could further
show that after an initial transient, the amphiphilic composition of micelles remains
rather stable over many generations, thus, the information stored in this composition
is inherited. Lancet et al. therefore call this information the compositional genome
of the system and stress out, that it could have played a functional role in the early
evolution of life, probably before more complex information carrier like biopolymers
had been established. For more detailed description of the GARD model and its
analysis, see [6].

One of the drawbacks of the GARD model is the simplistic modelling of micellar
kinetics [10] and the ignorance of space in the simulation [11], although the fission
process of amphiphilic aggregates might be significantly influenced by the arrange-
ment of surfactants on the surface into domains (see figure 1.2). Domain formation
in amphiphilic aggregates is both experimentally and theoretically a well known phe-
nomenon. Due to different physico-chemical properties of the involved molecules, the
chemical potential of amphiphiles near the domain boundary is higher than inside a
domain. This is the driving force for the growth of such domains. Temperature and
entropy, on the other hand, limit the domain growth. Such domain formation can
even induce the budding and fission of small vesicles from the origin vesicle [12, 13].

Domain formation is also known from a certain type of micelles, called binary bi-
layered mixed micelles or just bicelles. Bicelles are composed of two amphiphiles
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1.2. The Los Alamos Bug

(a) Domain formation
of sphingomyelin,
cholesterol and another
phospholipid on a giant
unilamellar vesicle [12].

(b) Schematic cut through a
bicelle showing the two am-
phiphilic domains [14].

Figure 1.2: Domain formation in mixed amphiphile aggregates: mixed vesicles (a)
and bicelles (b).

with different surfactant parameter. Therefore the two surfactants assemble into
domains with different curvature. The resulting shape is a disclike aggregate where
one domain forms a flat bilayer which is surrounded by a hoop-shaped cap domain.
The ration of the two surfactants determines the size of these discs.

In this work, the impact of space on the dynamics of the Lipid World is analyzed for
the first time. The affect of more realistic micellar kinetics on the generation cycle
of Lancet et al.’s theory will also be discussed.

1.2 The Los Alamos Bug

The second system of our studies is a proposal for an artificial protocell, that is
intented to be build vitro as a minimal molecular machine, able to undergo self-
replication and finally evolution. While this project will deepen the transition from
non-living to living matter, it is also meant as a starting point for new technolgy
based on living matter.

Although there is a controversal debate about the definition of life, there is a general
agreement that a system, in order to be called alive, must be able to self-maintain
its structure, to self-reproduce, and eventually to undergo evolution. These func-
tionalities are provided by three components: container, metabolism, and genome,
i. e. inheritable information that influences the functioning of the organism. Many
different designs of such proto-organisms have been proposed that differ in the actual
coupling between these components [15, 16, 17, 18, 19]. The minimal organism an-
alyzed in this work—the Los Alamos bug—has been proposed by Steen Rasmussen,
Liaohai Chen and co-workers in 2003 [18].

In the Los Alamos bug, the three ingredients for container, metabolism and genome
are fatty acid surfactants, sensitizer molecules and single stranded PNA (peptide
nucleic acid). In aqueous solution, fatty acids assemble into micelles—orders of
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magnitude smaller than phospholipid vesicles. The sensitizer is an aromatic molecule
and will therefore agglomerate in the interior of the micelle. In Rasmussen et al.’s
design, the PNA is decorated with hydrophobic anchors. However, the nucleic acids
exhibit numerous hydroxyl groups turning the single strand into an amphiphile.
Hence, it is supposed to stick at the surface of the micelle. Such a loaded micelle
forms the complete protocell (see figure 1.3.2).

The metabolism transforms externally provided precursors into building blocks of
the protocell. Supplied resources are sensitizers, surfactant precursors, and PNA
precursors two nucleotides in length. In the envisioned chemical implementation,
precursors are esters. The sensitizer uses light energy to break the ester bonds and
thereby transform the precursors into actual surfactants and PNA dimers which can
then polymerize into longer oligomers (figure 1.3.4). Nearby nucleotides can act as
charge relays to prevent a backward reaction to the esters. Because the efficiency
of this prevention depends on the actual type of bases, the information stored in
the PNA incluences the functioning of the metabolism, turning the template into
an actual genome.

The protocell grows with the incorporated nutrients. With the reach of a critical
size, the container becomes unstable and divides into two daughter cells (figure
1.3.6). Supposed that nutrients are provided in the right stoichiometric ratio, the
two daughter cells will be replicates of the original organism.

Figure 1.3: Schematic life cycle of the Los Alamos Bug: Components of the protocell
spontanously form a micellar container within which the sensitizer resides while the
PNA sticks at the surface of the container (1-2). Resources are added to the system
and get incorporated into the container (3). The PNA genome acts as a template
for supplied dimers to polymerize and replicate the PNA. This process is driven by
the sensitizers which use light energy to catalyze hydrolysis (4). Light energy is
also used to break the supplied surfactnt precursor into functional surfactant and
waste. The container grows as new surfactants are produced (5). Once the container
reaches a critical size, it becomes unstable and divides into two daughter cells (6).
This completes the life cycle of the protocell.
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1.2. The Los Alamos Bug

Current work on the Los Alamos bug includes both experimental and theoretical
studies. Among the current protocell research projects, it is maybe one with the
most theoretical efford. Mathematical models and computer simulations of this sys-
tem range from quantum molecular dynamics to mesoscopic simulations and formal
chemical kinetics. Beyond the limitations imposed by experimental constraints, an
important issue is the likelyhood of finding appropriate parameter domains where
stable protocell formation and replication can take place. If dynamical simulations
of simple and yet reasonably accurate models of protocell behavior are consistent
with a feasible cell division cycle, it will support the expectation of effectively ob-
serving such phenomena in the real world. Instead, if such a coupling were shown
to be seldom able to trigger replication, it would indicate that an experimental
implmentation might fail to work. In this work, the first whole simulation of the
Los Alamos bug is presented, providing support for a scenario favoring protocell
replication under a generic set of conditions.
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Chapter 2

Chemical background

2.1 Properties of water and amphiphiles

The term amphiphile is an umbrella term for substances with a special sort of solv-
ability in aqueous systems. If a substance is solvable in water, its individual mo-
lecules can disperse freely in the medium to form a homogenous solution. Such
substances are called hydrophiles. On the other hand, substances like oil cannot be
solved in aqueous mediums and are therefore called hydrophobes: if one adds these
substances to water, one can observe the formation of two phases with a sharp phase
interface inbetween them.
Whether a molecule is hydrophobic or hydrophilic depends on its charge or charge
distribution. Water molecules are dipoles: electrons within the water molecules
are attracted by its oxygen atom, making it partially negative charged, while the
hydrogen atoms are partially positive charged. As the water molecule is not linear
but has a bond angle of approximately 109 degree, the partial charges do not cancel
each other out but superpose to a dipole momentum.

Due to this charge distribution, water molecules interact with each other as well as
with other solvents by electrostatic forces: the partially positive charged hydrogen
atoms form hydrogen bonds (H-bonds) with the negatively charged oxygen. Unlike
the electrostatic field of a point charge, the dipole momenta are strongly directed.
Due to this directed force field, a water molecule can interact with four other water
molecules: in two of them, it acts as donor, in the other two as acceptor in a hydrogen
bond. As a result of these interactions, water molecules form extensive networks in
which local interactions can roughly be classified as satisfied (H-O) or frustrated
(H-H or O-O), making negative or positive contribution to the global energy.
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Chapter 2. Chemical background

Ions and polar molecules can interact with the dipolar water. When solved in water,
the surrounding solvent molecules arrange according to the (local) charge of the
solved molecule. If the solved molecule is positively charged, water molecules arrange
with their oxygen side towards the solved particle. Vice versa, if the solved molecule
is negatively charged, water molecules arrange with their hydrogen side towards the
charge. Uncharged and unpolar molecules cannot interact with water dipoles. The
phase separation one can observe in e.g. mixtures of oil and water results from this
lack of interactions. The dialectic characterization of substances into hydrophiles and
hydrophobes breaks down, however, if one considers molecules, that are composed
both of hydrophilic and an hydrophobic parts, usually refered to as head and tail,
respectively. These substances are called amphiphiles or surfactants. Amphiphiles
form a huge class of chemical substances, differing both in shape and properties
of heads and tails. Typical examples of surfactants include fatty acids, long chain
alcohols, alcyl sulfates, and amines. Some examples are shown in figure 2.1.

Figure 2.1: Typical examples of surfactant molecules. The hydrophilic head is lo-
cated on the right side of each molecule.

2.1.1 Aggregation of amphiphiles

If one tries to solve amphiphiles in aqueous mediums, they spontanously form
supramolecular aggregates of various shapes. Driving force of this aggregation pro-
cess is the minimization if free Gibbs energy G = H − TS, where H denotes the
enthalpy, T the temperature and S the entropy of the system. The entropy is re-
lated to the number of possible micro-state that result in the same enthalpy of the
system: the higher the number of micro-states, the higher the entropy. Solving a
hydrophobic molecule in bulk water introduces possibilities to resolve some frus-
trations in the water network, reducing the enthalpy of the system. On the same
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2.1. Properties of water and amphiphiles

time, the number of possible micro-states is reduced—i. e. the entropy of the sys-
tem is reduced. Thus, by minimizing the interface between water and hydrophobic
molecules, entropy is maximaizes the number of possible micro-states and therefore
the entropy. For the aggregation of amphiphiles, the maximazation of entropy out-
ranges the minimization of enthalpy and can therefore be seen as the driving force
of aggregation [20, 21].
Amphiphilic aggregates come in a huge variety of shapes and sizes, depending on the
chemical properties and concentration of the amphiphilic molecules, co-solvents, pH
value, as well as temperature and pressure. Figure 2.2 shows the most prominent
among these aggregates.

Figure 2.2: Typical amphiphilic aggregates: a) micelles, b) bilayers and c) vesicles

It is important to mention, that these aggregates are dynamic structures: individual
molecules diffuse over the surface of the aggregate, and are in constant exchange
with monomers in the bulk phase. Amphiphilic aggregates can be best understood
as “fluids solved in fluids”. This makes them subject to the study of soft condensed
matter.

2.1.2 The surfactant parameter

A simple concept to explain the manifold of shapes amphiphilic aggregates can form
is the so-called surfactant parameter that has been introduced by Israelachvili et
al. in the late 1970s [22]. The surfactant parameter—also called molecular packing
parameter—catches the geometrical shape of an amphiphile in solution. It is defined
as

NS =
v

a0l

where v measures the volume of the hydrophobic portion of the molecule, l the
length of its hydrocarbon chain, and a0 the effective area of the hydrophilic head.
Therefore NS relates the volume of the hydrophobic portion to its length normed
by the hydrophilic area.
The values of v and l can be easily estimated from the chemical structure of the
hydrocarbon chains of the amphiphile. For their estimation, only the number of
carbon atoms and the number of methyl groups in the chains have to be known.
While v and l are molecular properties, the value of a0 “is a thermodynamic quantity
obtained from equilibrium considerations of minimum free energy and is not a simple
variable connected to the geometrical shape and size of the surfactant headgroup”
[23]. Thus, it depends on thermodynamic variables like temperature and pressure,
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Chapter 2. Chemical background

as well as the concentration of surfactants and cosolvents and the pH of the solution.
(see [24] p. 15-18 for details).

l

N  = 1/2

a0

l

sN  = 1/3

a0

l

sN  = 1

a0

s

Figure 2.3: Simple geometrical shapes elucidate the relation between a0, v, l and the
surfactant parameter NS.

The surfactant parameter can help to determine the optimal curvature of the ag-
gregate that will emerge from a given set of amphiphiles. To understand the impli-
cations of NS it is most easy to consider a circular shape of the hydrophilic group
(see figure 2.3). Then, if NS equals to one, the shape of the surfactant will be a
cylindar and the favorite shape of the emerging aggregate will be a bilayer. If NS

equals 1/3, the surfactant has the shape of a cone and prefers to form micelles in
an aqueous solution. For values between 1/3 and 1, more sophisticate aggregates
can be found including cylinders and even scaffolds of interconnected cylinders. If
NS is greater than 1, inverse structures are favored, where the surfactant surrounds
and encapsulates parts of the solution. This is especially important if the system is
composed of different amphiphiles whose NS are inverse to each other. In this case,
the aggregates will tend to form closed, curved bilayer structures – i. e. small size
vesicles.
Because a0 is a parameter of the system rather than the individual surfactant mole-
cules, NS—and therefore the shape of amhiphilic aggregates—can vary with thermo-
dynamic variables (temperature, pressure, . . . ) as well as surfactant concentrations.
Figure 2.4 shows a typical phase diagram for a surfactant system.

2.2 Micelles

Micelles are the smallest possible amphiphile assemblies. In these assemblies, the
tails of the amphiphiles stick together to form the inside of a closed sphere whose
surface is built by the hydrophilic heads of the amphiphile. Micellar structures are
preferably formed by fatty acids, alcylsulfates and other surfactants with only one
hydrocarbon chain (figure 2.1). Lipids and other amphiphiles with several hydrocar-
bon chains preferably form layers, as the volume of the hydrophobic chains cannot
completely shielded by the head groups.

2.2.1 Size and shape of micelles

Micelles have been experimental analyzed since the 1970s. Although micellar sys-
tems are very dynamic, scattering (light scattering, X-ray scattering, a.s.o.) and
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2.2. Micelles

Figure 2.4: Phasediagram of a surfactant solution for constant pressure. By increas-
ing the surfactant concentration, the system undergoes several phase transitions from
solved monomers to spherical micelles (CMC), rodlike micelles (CMC2), hexagonal
stacked rocks (H1), cubic structures to bilayered lamellar crystal structures (pic-
ture from www.chembio.uoguelph.ca/educmat/chm753/synthesis/physical/

evap self assembly1.htmlK).

relaxation experiments (temperature or pressure jumps) could be successfully ap-
plied to give insight into the properties of such systems [24]. These experiments
showed that there is a sharp transition of the system, when a certain threshold
in the concentration of dissolved surfactants is crossed: below this critical micelle
concentration (CMC) surfactants are mainly solved in bulk phase, whereas above
the CMC, the molecules assemble into micelles. Many macroscopic parameters
(viscosity, foamabolity, etc.), when plotted against the concentration of dissolved
surfactant, exhibit a sudden change when the concentration equals the CMC.
Furthermore, it has been observed that spherical micelles have a characteristic size
distribution (see figure 2.5). Micelles have a prefered aggregation number N that
denotes the number of constituent amphiphiles (typically between 20 and 100). Mi-
celle size varies around the aggregation number with a standard deviation of σ.
Appart from the the assemblies, a micellar system consists of monomers and small
submicellar aggregates in bulk phase. The fraction between monomers and micelles
depends on the surfactant concentration (as will be seen in section 2.2.2), N and σ,
on the other hand, are only little affected by the surfactant concentration. Table 2.1
lists aggregation numbers and CMC for a number of alcylsulfates.

2.2.2 Micellar kinetics

Mathematical models of micellar kinetics have been first introduced in the 1970s
[26, 27, 25, 28] by Aniansson and coworkers. They formalized the aggregation process
of surfactant monomers in terms of chemical kinetics under the major assumption
that surfactant aggregation is a stepwise process that involves only the association
and dissociation of single monomers. This assumption leads to the so-called Becker-
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Figure 2.5: Typical size distribution of a surfactant system for concentrations of
spherical micelles. Micelles concentrate around a mean aggregation number N with
a small standard deviation σ (region III). The system further contains monomers
and small submicellar aggregates (dimers, trimers, . . . ) in bulk phase (region I). In
the intermediate region II (with n1 < n < n2) only very few aggregates are found.

surfactant N CMC (M) k− (s−1) k+ (M−1s−1)
NaC6H13SO4 17± 6 0.42 1.32× 109 3.2× 109

NaC7H15SO4 22± 10 0.22 7.3× 108 3.3× 109

NaC8H17SO4 27 0.13 1.0× 108 7.7× 109

NaC9H19SO4 33 6× 10−2 1.4× 108 2.3× 109

NaC11H23SO4 52 1.6× 10−2 4× 107 2.6× 109

NaC12H25SO4 64± 13 8.2× 10−3 1× 107 1.2× 109

NaC14H29SO4 80± 16.5 2.05× 10−3 9.6× 105 4.7× 108

Table 2.1: Aggregate number (N), critical micelle concentration (CMC), and associ-
ation and dissociation rates (k+, k−) for sodiumalcylsulfate surfactants with different
hydrocarbon chain lengths (from [25] and references therein).

Döring scheme:

Sn−1 + S
k+

n

←−−→
k−n

Sn n ≥ 2 (2.1)

where S stands for a surfactant monomer and Sn−1, Sn for aggregates of size n and
n− 1 respectively.
By relating the equations 2.1 to a heat-transfer and later to a diffusion problem,
Aniansson et al. could derive analytical expressions for the fast and slow relaxation
times: Under the assumptions that a) k−n = K− and k+

n = k+ are independent of
n in the region of proper micelles, b) the micellar distribution is a Gaussian with
mean N and standard deviation σ, and c) σ is broad enough to replace differences
by derivatives, they estimate the fast relation time τ1 as:

1

τ1

=
k−

σ2

(
1 +

σ2

N
a

)
with a =

[S]T − [S]

[S]
(2.2)
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2.2. Micelles

With the additional assumptions that d) the flow of monomers between submicellar
aggregates is constant, Jn = J = constant for n1 ≤ n ≤ n2, e) fast relaxation is
instantaneous compared to slow relaxation, hence Jn = 0 for n < n1 or n > n2, and
f) the concentration of dimers, trimers and other submicellar aggregates is negligible,
[S2] = [S3] = . . . = [Sn1−1] = 0, the slow relaxation time can be expressed as

1

τ2

=
N2

[S]

1

R

(
1 +

σ2

n
a

)−1

with R =

n2∑
n=n1+1

1

k−n An

(2.3)

Later, laboratory experiments [29] suggestaed that the Becker-Döring scheme is an
oversimplification of the aggregation process: For higher surfactant concentrations,
micellar aggregation happens not only by association of monomers but submicel-
lar aggregates also, which effectively increases the speed of micellar aggregation.
To account for the fusion of submicellar units, equation 2.1 can be rewritten as a
Smoluchowsky scheme

Sn + Sm

k+
m,n

←−−→
k−m,n

Sm+n (2.4)

which, of course, reduces to the former reaction scheme if km,n = 0 for m 6= 1.
In 1999, Mailet et al. verified the presence of submicellar fusion in systems of
nonyltrimethylammonium and erucyl bishydroxyethylmethylammonium using fully
atomistic molecular dynamics simulations [30].

Whichever reaction scheme one might use, the main problem is to identify the reac-
tion rate constants k

+/−
n and k

+/−
m,n , which, for mean aggregate numbers up to around

100 add up to 200 and 10.000 values respectively. Due to the small length scale and
fast kinetics of micellar systems, it is impossible to measure these rate constants by
laboratory experiments.

Although we cannot obtain reliable kinetic constants for equations 2.1 and 2.4, we
can gain some insight into the properties of micellar systems by further simplify-
ing these models. Assuming one dominant aggregate number N , we can simplify
the kinetics to the closed association model, where the system is composed only of
monomers S and aggregates SN of size N . The overall reaction then reads:

NS ←→ SN (2.5)

with the equilibrium constant

KN =
[SN ]

[S]N
(2.6)

For the closed association model, the total surfactant concentration is related to the
monomer concentration by

[S]T = N [SN ] + [S] = NKN [S]N + [S] (2.7)

We can use this relation to estimate the fraction of added surfactants that will enter
into aggregates, by solving equation 2.7 for ∂N [SN ]/∂[S]T . Elementary calculus
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Chapter 2. Chemical background

leads to the ordinary differential equation

∂N [SN ]

∂[S]T
=

∂NKN [S]N

∂[S]T

= N2KN [S](N−1) ∂[S]

∂[S]T

= N2KN [S](N−1)

(
1− ∂N [SN ]

∂[S]T

)
=

N2KN ([S]T −N [SN ])(N−1)

1 + N2KN ([S]T −N [SN ])(N−1)
(2.8)

In the closed association model, the CMC equals the concentration where added
surfactant enters an aggregate with the same probability than remaining in the bulk
phase; hence:

∂N [SN ]

∂[S]T

∣∣∣∣
CMC

=
∂[S]

∂[S]T

∣∣∣∣
CMC

= 0.5 (2.9)

By inserting this in equation 2.8 we obtain the concentration of monomers at the
CMC

[S]CMC = (N2KN)−1/(N−1) (2.10)

We can even express [S]CMC independent of KN if we substitute [S]T = CMC in
equation 2.7:

CMC = [S]CMC + NKN [S]NCMC = [S]CMC(1 + N−1) (2.11)

It follows that the amount of micellized surfactant at the CMC is

N [SN ]CMC =
[S]CMC

N
=

CMC

N + 1
(2.12)

and the concentration of micelles at the CMC is

[SN ]CMC =
CMC

N2 + N
(2.13)

Finally, we can calculate the equilibrium constant KN combining 2.11 and 2.12:

KN =
1

N2
(

N CMC
N+1

)(N−1)
(2.14)

To obtain the fraction of micellized surfactant outside the CMC, we integrated equa-
tion 2.8 numerically for the surfactant parameters listed in table 2.1 with the initial
condition N [SN ]CMC = CMC/(N + 1). Some of the results are shown in figure 2.6
and 2.7. The greater N the more abrupt is the onset of micelle formation above the
CMC. For N →∞ micelle formation becomes a sharp first order phase transition.
From the equilibrium constant we can calculate the free energy change ∆G0 that ac-
companies the aggregation process of equation 2.5. In the closed association model,
this energy change is N times the energy change of a single monomer, which again
can be expressed as a change of the chemical standard potential ∆µ0:

∆G0 = N∆G0
mono = N(µ0(micelle)− µ0(solvent)) = −RT ln KN (2.15)
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Figure 2.6: Fraction of added surfactant that enters an aggregate against total
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N, the more abrupt is the onset of micelle formation above the CMC. The CMC is
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N →∞ micelle formation becomes a sharp first order phase transition.
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Figure 2.7: Fraction of micellized surfactant N [SN ]/[S]T against total surfactant
[S]T . Vertical lines mark the CMC of the respective surfactants. For greater N the
amount of micellzed surfactant increases rapidly with the surfactant concentration.
At [S]T = 2CMC, around 50% of the surfactants are micellized, independent of the
length of their hydrocarbon tail.
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Chapter 2. Chemical background

Table 2.2 lists KN and ∆G0
mono/RT for the surfactants observed. As expected, the

longer the hydrocarbon chain of the surfactant, the bigger is the free energy gained
by micellization.

surfactant N CMC (in M) KN ∆G0
mono(inRT)

NaC6H13SO4 17 0.42 9.21× 103 −0.5369
NaC7H15SO4 22 0.22 3.39× 1011 −1.2067
NaC8H17SO4 27 0.13 3.85× 1020 −1.7555
NaC9H19SO4 33 6× 10−2 3.00× 1036 −2.5452
NaC11H23SO4 52 1.6× 10−2 3.80× 1088 −3.9224
NaC12H25SO4 64 8.2× 10−3 1.74× 10128 −4.6139
NaC14H29SO4 80 2.05× 10−3 9.81× 10208 −6.0153

Table 2.2: Equilibrium constants KN for the surfactants of table 2.1 calculated with
the closed association model. See text or details.

It is worth mentioning that the described mathematical models of micellar kinetics
assume the system to be in its equilibrium state. There is no closed theory for
micellar systems far away from their equilibrium state. Our systems of interest,
however, are far from equilibrium due to ongoing chemical reactions. Thus, more
detailed models are needed to successfully analyse them. The model of our choice is
introduced in chapter 3.2. However intricate this model and its predicted dynamics
might be, it should allow to obtain the above results when applied to an equilibrium
system.
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Chapter 3

Dissipative Particle Dynamics

The dynamics of micellar systems occur in physical length and time scales, that make
their treatment by computer simulation extremely intricate. Ideally, one might wish
to model such systems in their fully atomistic detail. For such an approach, molecu-
lar dynamics (MD) would be the tool of choice, where the position and momentum
of every single atom in the system is tracked through time. However, despite the
overwhelming increase of computer performance, MD is still restricted to several or-
ders of magnitude below both length and time scale of interest. On the other hand,
the number of constituent molecules of micellar systems is too small to allow for
continuum descriptions based on partial differential equations, like e.g. density field
theory. This makes it necessary to analyze micellar kinetics with mesoscale simula-
tion techniques, which intend to bridge the gap between atomistic and continuum
descriptions.

3.1 Coarse graining Molecular Dynamics

The general idea behind mesoscopic simulation methods is to somehow coarse grain
the original atomistic approach. This is possible because the dynamics of MD simu-
lations can be decomposed into fast and slow types of motion: the fastest degrees of
motion in classical (non-quantum) MD simulations are the vibrational fluctuations
of covalent bonds, which act on the order of femtoseconds – several orders of magni-
tude below rotational and translational degrees of freedom [31]. We can think of the
potential energy landscape of a typical MD simulation as a slowly decreasing path
(slow manifold) at the bottom of a steep valey (fast manifolds). However, most
properties of mesoscopic systems are relatively unaffected by the underlying fast
degrees of freedom. Mesoscopic simulation techniques intent to catch the motion
along the slow manifold while effectively averaging along the fast manifold, leading
to a much greater time step. A consequence of the time coarsing is, that the spatial
resolution of of the method decreases (as space and time are related by particle
velocities), which leads to an effective spatial coarse graining. Instead of individual
atoms, mesoscopic simulation methods deal with clusters of atoms or even molecules:
beads of a polymer strand or a “lump” of water.
A variety of mesoscopic methods has been established, each one having its own
strengths and limitations. Basically, there are two strategies to simplify the details
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Chapter 3. Dissipative Particle Dynamics

of a fully atomistic model: one is to move from the continuos physical space to an
approximating lattice and to build an automaton that mimicks the particle motion
within that simplified space. The most prominent models in this category are pos-
sibly Lattice Gas (LGA) and Lattice Boltzmann automata (LBA) [32, 33, 34]. The
second approach —coarse grained MD—preserves the continuity of space. However,
unlike MD, coarse grained methods assume an underlying medium which aggeregates
degrees of freedom on the micrscale. Particles interact with this medium according
to the Ginzberg-Landau equation

d2ri

dt2
= −∇φi − µvi + ξi (3.1)

where ri,vi denote the position and velocity of particle i, µ models the viscous
damping and the random variable ξ the Brownian motion of the fluid. Several
modeling techniques have been based on equation 3.1. The most prominent among
them are Brownian and Stokesian Dynamics.

Dissipative particle dynamics (DPD) is a coarsed graind MD method for fluids based
on equation 3.1. It has been invented 1992 by Hoogerbrugge and Koelmann [35].
Since its invention, DPD has received various theoretical support [36, 37, 38, 39, 40,
41, 42, 43]. The method has been proved to successfully describe thermodynamic
systems [36]. Furthermore, it has been shown that DPD is an approximation of
the Navier-Stokes equation of hydrodynamic motion [35]. Thus, it conserves flow
properties of the modeled physical system. In this sense, DPD is a real mesoscale
simulation technique, that links both to the atomistic scale of MD simulations, as
well as to continuum descriptions of fluids.

The DPD method used throughout this work is the revisited DPD version by Groot
and Warren [38]. This variant has become the de facto standard for DPD applica-
tions over the last decade.

3.2 The DPD Formalism

A DPD simulation consists of a set of N particles located in either two or three-
dimensional continuous space with Euclidean metrics. Each particle i has a position
ri, mass mi and momentum qi, from which one can derive its velociy vi = qi/mi.
Its motion is determined by a force field Fi through Newton’s third law of motion:

d2ri

dt2
(t) =

1

mi

Fi(t) (3.2)

The force acting on particle i can be decomposed into pairwise interactions, which
respectively are the sum of of three different components – a conservative, a dissi-
pative and a random one:

Fi =
∑
j 6=i

Fij =
∑
j 6=i

FC
ij + FD

ij + FR
ij (3.3)
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3.2. The DPD Formalism

where FC , FD and FR are defined by

FC
ij = −∇φij (3.4)

FD
ij = −ηωD(rij) 〈nij,vij〉nij (3.5)

FR
ij = σωR(rij)ξijnij (3.6)

For each particle pair (i, j) rij = ri − rj is the relative position, rij = |rij| the
distance and vij = vi − vj the relative velocity. We denote with nij = rij/rij the
(unit) direction between the two particles. 〈·, ·〉 denotes the standard scalar product.
The conservative force FC

ij can be defined in the usual way as the negative gradient
of a potential φij = φ(rij). The general DPD formalism does not specify the exact
form of φij, but only states that it should be mostly repulsive. We discuss the choice
of φij in more detail in section 3.3. Here, we only want to state that almost all DPD
models dicussed in the literature use a potential of the form

φ(r) =

{ aijrc

2
(1− r

rc
)2 if r < rc

0 otherwise
(3.7)

whereby aij and rc are constants that define the strength and range of the particle
interaction. The resulting repulsion force decreases linearly with particle distance.
The dissipative force FD

ij is a function of the relative velocity of the two particles.
It models the viscous damping of the fluid. The friction coefficient η scales the
strength of this force and ωD is a distance weighing function not determined by the
general formalism, that will be specified later. The dissipative force introduces a
flow of energy from the explicit modeled mesoscale to the underlying microscale:
The friction of the fluid successively breaks down particle flows into less and less
ordered motion. In a real fluid, this would lead to local heating (Brownian motion).
But as motion on the atomistic scale has been taken out of the model, energy is
simply removed from the system.
The random force, FR

ij accounts for thermal effects. It counteracts the dissipative
force by introducing an energy flow from the atomistic scale back into the mesoscale.
It is scaled by a strength parameter σ and a second weighing function ωR. ξij is a
Gaussian distributed random variable with zero mean and unit deviation.
In order to reproduce the right thermodynamic behavior, the DPD formalism must
satisfy the fluctuation dissipation theorem, which states that a fluctuation (pertur-
bation) in the system will be dissipated as the system returns to its well-defined
equilibrium, and that this dissipative relaxation is proportional to the fluctuation.
As a consequence, the equilibrium state will obey Maxwell-Boltzmann statistics and
therefore allows the derivation of thermodynamic properties. As shown by Español
and Warren [36], DPD satisfies the fluctuation dissipation theorem if and only if the
weighing functions ωD and ωR satisfy the relation

ωD = (ωR)2 (3.8)

For historical reasons, as well as with respect to the conservative forces in DPD,
most authors set

ωD(r) = (ωR(r))2 =

[
2(1− r

rc

)

]2

(3.9)
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Chapter 3. Dissipative Particle Dynamics

If relation 3.8 is fulfilled, FD
ij +FR

ij acts like a thermostat to regulate the temperature
of the sytem. The equilibrium temperature kbT is then given by

kbT =
σ2

2η
(3.10)

where kb denotes the Boltzmann constant 1.38 · 1018JK−1. Due to the finite size
of the system, the measured temperature will fluctuate around this equilibrium
expectation value. In MD simulations, a variety of thermostats has been explored
but only the DPD-thermostat is guaranteed to conserve momenta of the particles,
and thus flow properties of the fluid. It is therefore the only thermostat that allows
the study of transport processes (see [43]).
For the study of polymer and amphiphile solutions, it is common to introduce bond-
ing forces into the model. A bond between particles i and j is formalized by an
additional harmonic spring force, such that

FS
ij(r) =

{
b(1− r/rb) if (i, j) are bonded

0 otherwise
(3.11)

with strength b and range rb, respectively. The overall force between particle i and
j then becomes

Fij = FC
ij + FD

ij + FR
ij + FS

ij (3.12)

It should be noted, that all involved forces are central (Fij = −Fji), parallel to
the relative position, and conserve linear and angular momenta but not energy. As
the forces depend only on relative particle positions and velocities, the model is
transrotational invariant (Galilean invariant).

3.3 Soft Core Potential Functions

In almost all DPD publications, the interaction forces FC and FS are linear relations
of the form F(r) = a(1− r/rc). They appear as the derivates of a soft core potential
function

φ(r) =

{
arc

2

(
1− r

r c

)2
if r < rc

0 otherwise
(3.13)

(The term “soft core” refers to the elastic properties of the interacting particles. On
the other hand, potentials with a singularity at 0 are called “hard core” potentials)
The choice for this particular interaction potential is seldom discussed in the DPD
literature, and seems to be mainly based on heuristic reasoning: φ is the most simple
short range potential that is finite and exhibits a continuous force (even at the cutoff
distance). Both short range and finiteness have great computational advantages: a
short range potential drastically reduces the particle interactions that need to be
taken into account, while finiteness allows to increase the numerical step width.
Disregarding the atomistic details, φ can be conceptually understood as a penalty
for the deviation from a regular equilibrium distribution. Even the far more detailed
approach of MD uses such simple “penalty potentials” for modelling covalent bonds
(equation 3.11), despite its obvious physical inaccuracy: the harmonic potential
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3.3. Soft Core Potential Functions

increases without bounds with distance. Hence, it does not account for the formation
or bond dissociation. Instead, it only seeks to reflect the energy difference of small
deviations from the equilibrium value. According to the DPD philosophy, it is
straightforward to transfer this argument also to the interparticle potentials.
However, if DPD aims to be a concise mesoscale method, that can successfully link
up to an atomistic description, we need a more rigorous foundation of this potential
function. One method to derive a soft core potential from underlying atomistic
potentials is given by Forrest and Suter [44] and shall be discussed here in some
detail.
In molecular dynamics, non-bonded (and non-charged) interactions are usually mod-
eled by the so-called Lennard-Jones potential:

φLJ(r) = 4ε

((σ

r

)12

−
(σ

r

)6
)

(3.14)

-ε

0

r*0

Lennard Jones potential

In this equation, r−12 models the strong repulsion resulting
from overlying electron clouds due to the Pauli exclusion
principle, while −r−6 describes the attraction between two
atoms due to induced dipole interactions (so called van-der-

Waals forces). At the van-der-Waals radius r∗ = 2
1
6 σ the

potential exhibits a minimum. It is interesting to mention,
that even the Lennard-Jones potential cannot be plainly
derived from theory: only the attractive part of equation
3.14 can be found as one term in a multipole expansion of
an assumed underlying electron distribution (see e.g. [24]).
The repulsive term, however, is a pure ad hoc-expression
that has no quantumphysical explanation.
Based on the assumption that the effective mesoscopic mo-
tion is relatively unaffected from fast atomistic motion, Forrest and Suter use a time
coarse-graining procedure to preaverage the fast degrees of freedom: At each time
t0 + t, t0 = ktav, the actual particle position ri(t0 + t), i = 1, . . . , N , is given by the
mean position Ri(t0) and a random deviation ∆i(t) on the smaller scale:

ri(t0 + t) = Ri(t0) + ∆i(t) for t ≤ tav (3.15)

Forrest and Suter perform atomistic MD and hybrid Monte Carlo simulations to
obtain a set of Ri’s and ∆i’s for polymer solutions. The potential energy U of the
system can be decomposed into bonded and non-bonded (Lennard-Jones) contribu-
tions:

U({Ri + ∆i}) = Unb({Ri + ∆i}) + Ub({Ri + |Deltai})
≈ Unb({Ri + ∆i}) + Ub({Ri}) (3.16)

For a canonical ensemble, the system states {ri(t)} follow a Bolzmann distribution
pB({ri(t)}) ∝ e−1/kbTU{r(t)}.
The aim is now to derive an expression for an effective non-bonded potential energy

U
eff
nb that reveales the Ri(t0) without knowing the intermediate states at times t0 +
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Chapter 3. Dissipative Particle Dynamics

t. The bonding potential Ub can later be added again, to obtain a total effective

potential Ueff = U
eff
nb + Ub. Forrest and Suter define U

eff
nb as an observable of the

system. Assuming an ergodic sampling of the system, U
eff
nb can be averaged over a

time interval nt∆t (where nt denotes the number of measurements) according to〈
U

eff
nb

〉
=

1

nt

nt∑
k=1

U
eff
nb ({ri(k∆t)}) (3.17)

Here, t = nt∆t is considered as the time scale of the atomistic scale. Using expression
3.15, we can decompose this sumation into successive blocks of length τ = tav/∆t.

〈
U

eff
nb

〉
=

1

nt/τ

nt/τ∑
k=1

1

τ

τ−1∑
l=0

U
eff
nb ({Ri(kτ∆t) + ∆i(l∆t)}) (3.18)

With the assumption that ∆-fluctuations have a distribution p∆({∆i}) independent
of the particle position {Ri}, one can follow that〈

U
eff
nb

〉
∝

∫ [
N∏

i=1

d(3)Ri

] ∫ [
N∏

i=1

d(3)∆i

]
U

eff
nb ({Ri + ∆i})

×p∆({∆i})e
− 1

kbT
U({Ri+∆i}) (3.19)

Forrest and Suter finally derive U
eff
nb as

U
eff
nb ({Ri}) = −kbT ln

∫  N∏
i=1

d(3)∆i(2π
〈
∆2

〉
)−3/2 × e

−∆2
i

2〈∆2
i 〉


×e

− 1
kbT

Unb({Ri+∆i}) (3.20)

Figure 3.1: Lennard-Jones
potential and effective po-
tentials for coarse-graining

factors 〈∆2〉1/2
= 1Åand

〈∆2〉1/2
= 1Å.

We can see, that each of the mean (“block”) con-
figurations {Ri} appears with the probability density
peff ({Ri}) ∝ e1/kbTUeff ({Ri}). The fast degrees of mo-
tion ∆i are completely rallied in the integral. We
therefore have effectively preaveraged over the fast ∆-

fluctuations. U
eff
nb gives the energy of the whole system

configuration {Ri}. However, one can decompose the
effective potential into pairwise superpositions of ra-
dial potentials: Ueff (Ri) =

∑N
j=1 Veff (Ri−Rj). To see

how this can be achieved, consult the original work by
Forrest and Suter [44].
Unfortunately, the integral in equation 3.20 is not an-
alytically solvable. Forrest and Suter nummerically

integrated U
eff
nb for different time averages tav. Doing

so, they could show, that U
eff
nb is indistiguishable from

the soft-core potential, when tav and thus 〈∆2〉1/2
is

sufficiently large (〈∆2〉1/2
= 2Å). See figure 3.1 for a

comparision.
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3.4. Thermodynamic properties in DPD

3.4 Thermodynamic properties

in DPD

To deepen the understanding of the method, we want to discuss shortly some ther-
modynamic properties of DPD.
It has already been discussed, how the temperature is regulated by the thermostat
FD +FR, and that the equilibrium temperature is given by kbT = σ2/2η. As particle
number and volume are constant we operate in the NVT ensemble. The pressure of
the system configuration can be obtained from the virial expression [45]:

p = ρkbT +
1

3V

〈∑
i<j

(ri − rj)F
C
ij

〉
(3.21)

where the brackets denote the average over all particles. Groot and Warren measured
p for various densities ρ and could obtain the equation of state, that is p as a function
of ρ as

p = ρkbT + αaρ2 where a = 0.101± 0.001 (3.22)

The approximation is reliable for densities ρ > 2. If one wants to run simulations
in a NPT ensemble—i. e. the pressure is constant instead of the volume—one can
turn the system size V into a dynamic variable. By doing so, Trofimov developed a
DPD barostat to dynamically adjust the pressure of the system [43].
From section 3.3, it has become apparent that the potential energy φ must not be
understood as a “mechanical” potential like the one used in MD, where the potential
describes the internal energy U of the system. Rather, the DPD potential is derived
from the mesoscopic motion of the system. It catches the driving force of the motion,
which is the minimization of free energy. Apart from this heuristical argument,
Pagonabarraga and Frenkel derive the DPD potential from a generic expression of
the free energy [40]. For the NVT ensemble, φ therefore expresses the Helmholtz free
energy A = U − TS, where T is the temperature and S the entropy of the system.
The Helmholtz energy is related to the Gibbs energy by

G = A + pV = U + pV − TS (3.23)

It is elucidatve to mention that the Gibbs free energy is related to the chemical
potential µ0 of the constituents of the system by G =

∑
i µ

0
i [45].

For the processes, we are interested in, volume and pressure changes are excepted
to be negligible small, thus

G =
∑

i

µ0
i ≈

N∑
i=1,i<j

φij = A (3.24)

This is very convinient, as ∆G is the main thermodynamic variable accessible by
experiments. Experimental observables can be directly used for the simulation, and
there is no need to explicitely cope with entropy in our simulation (as needs to be
done when operating with the enthalpy of the system).
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Chapter 3. Dissipative Particle Dynamics

3.5 Incorporation of chemical reactions

We extended the DPD formalism to account for chemical reactions. The way chem-
ical reactions are implemented in our model is taken from a publication by Naoki
Ono [46], where Brownian Dynamics is extended with the same algorithm.

Chemical reactions occur between two reactants and fall into three different classes:

Synthesis: A + B −→ X−Y

Analysis: A−B −→ X + Y

Configuration change: A−B −→ X−Y

Each reaction has a given rate for spontaneous occurance ks.

cat

R

rcat

R

r

Figure 3.2: Catalytic influ-
ence on a synthesis. Reac-
tants are shown in blue, cat-
alysts in yellow. See text for
details.

The spontaneous reaction rate can be enhanced by
the presence of nearby catalysts. The catalytic effect
linearly decreases with the distance to the reactant.
For simplicity, the effect of several catalysts is modeled
as a linear superposition. Thus, the overall reaction
rate is given as

k = ks +
∑
C

kcat

(
1− r(C)

rcat

)
(3.25)

Syntheses have the further restriction, that the dis-
tance of the reactants must be less than a maximal
reaction range R in order for them to occur.

When obtaining probabilities from these reaction
rates, one focuses the problem that reactions are not
always independent events. Consider three reactants
that are close enough to each other to take place. De-
spite the equal reaction rates, only one of the two to
three possible reations can actually be realized. The
rigorous way to solve this problem would be the con-
struction of a master equation where probabilities are given for every possible state
transition of the whole system [47]. However, as our system can hold up to hundreds
of reactants, such an approach becomes practically unfeasible, simply because of the
enormous number of possible state transitions. To determine which reactions take
place, we therefore use the agent-based like algorithm introduced by N. Ono [46].

For every reaction scheme, we successively check all possible pairs of reactants
A,B, and compare their effective reaction rate k to a number taken from a pseuo-
randomnumber generator. If the reaction rate is smaller than this number, we per-
form the reaction and go on to the next pair of reactants. A and B, however, will
not be considered again in this step. The exact algorithm—notated in the python

programming language—reads like this:
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shuffle(reaction_list)
for reaction in reaction_list :

for A in space.particles(reaction.educt_A) :

if reaction.is_synthesis :
# if reaction is a synthesis, possible reaction partners
# are particles of type educt_B in the vicinity of A.
partners = A.neighbors(reaction.educt_B,reaction.R)

else :
# otherwise, possible reaction partners are particles
# of type educt_B bonded to A.
partners = A.bonded(reaction.educt_B)

for B in partners :
# compute effective reaction rate
k = reaction.k
for C in A.neighbors(reaction.catalyst,reaction.r_cat) :

k += reaction.k_cat *
( 1 - (A.pos-C.pos).length()/reaction.r_cat )

if random() < dt * k :
# perform reaction
react(A,B,reaction)
# and leave inner for loop
continue

If a reaction occurs, we change the particle types of the educts A→ X, B→ Y and
establish or remove a bond between the products, depending on the type of reaction.
Particle positions and momenta are conserved.
We also introduced particle exchange into the model to mimick the support of chem-
icals into the system which drive it out of its equilibrium. Within a given region,
particles of a certain class can be exchanged with a given probability. Likewise
chemical reactions, we conserve positions and momenta when exchanging particles.

3.6 Applications and limitations of DPD

DPD has been introduced by Hoogerbrugge and Koelman to model the rheology
of suspensions (e.g. cement, clay) [35, 48]. To catch the geometry of suspended
mesoparticles they connect some DPD beads by rigid bonds. The DPD method
can than be applied to analyse flow properties of these complex fluids under various
constraints like compression or shear forces [49, 50].
The method has later been used to model block polymers [51, 52]. Polymers are
introduced into DPD by connecting several beads by elastic spring forces (as de-
scribed above). To account for the relative immiscibility of different sections of
a block polymer, repulsion parameters between representing DPD beads are var-
ied. One can then observe phase seperation of the immiscible polymer sections and
analyze domain formation as an interplay of entropy maximaztion and enthalpie
minimazation.
Using the same bead-spring representation, DPD has been applied to phospholipid
bilayers that form the basis of biological membranes. Spontenous formation of mem-
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Chapter 3. Dissipative Particle Dynamics

branes within a mixture of lipids and solvents has been investigated by Venturoli
and Smit [53]. Groot and Rabone used DPD to model surface tension, damage and
rupture of model membranes [54]. Yamamoto et al. observed a spontenous bilayer
to vesicle transition [55] and later used the method to analyse domain formation for
mixed lipid vesicles [13]. Depending on the ratio of lipids on the outer and inner
membran, they could induce budding and fission of the membrane.
Only very little efford has been done to model micelles with DPD. To our knowledge,
only two publications of R. D. Groot cover the specific issues of micellar systems
[56, 57]. However, this work focuses on the interplay between micelles and poly-
mers. Because of the different involved length scales, surfactants are modeled by a
very simplistic representation and certain features of micellar systems, namely the
characteristic size distribution cannot be observed using Groots parameter set.
It is also known, that DPD cannot model certain phenomena found in real fluidic
systems. First, turbulent flows are outside the scope of this method. Turbulence
involves all scales of the system. By modelling microscopic motion implicitly through
the DPD thermostat, we loose the ability to model such motion. Until today, there
is no mesoscale method that can achieve turbulence. Thus, all DPD simulations will
be limited to laminar flows.
Second, it is known that the simple repulsion potential commonly used in DPD si-
mulations cannot predict phase separation phenomena like the coexistence of liquid
and vapour phases: in a pure aqueous system, particles will spread more or less
homogeneously throughout the space without any significant density variation. In
a real system, however, we expect water to occupy only a certain portion of the
space – preserving a certain pressure – while the remainder of the space is filled with
vapour. Frenkel and Pagonabarraga developed a modification of the standard DPD
algorithm, called many-body DPD or MDPD, that allows to model such phase sepa-
rations [40]. The method has further been investigated by Trofimov et al. [42]. Their
variant of the method essentially introduces attractive forces between the particles,
thus mimicking the long tail of the Lennard-Jones potential. To counterpart this
attraction, they use a repulsion that depends on the local density of each interacting
particle pair. It can be shown, that this density dependent potential is equivalent to
many-body interaction potentials, hence the name of the method. MDPD has been
used successfully to model interface phenomena like those occuring in a pending
droplet [58].
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Chapter 4

Results

4.1 Pure aqueous system

To gain confidence into our implementation of the DPD model, we started with
simulations of a pure aqueous system. Simulations have been run in a box of size
10×10×10r3

c . Here and throughout the following experiments, we used the standard
DPD parameters for the friction constant ν = 4.5, noise-level σ = 3.0 (hence kbT =
1), mass m = 1, cutoff-distance rc = 1, water water repulsion 25kbT , and water
density ρ = 3r−3

c , unless otherwise noted.

4.1.1 Validation

To get an estimate of the quality of our numerical solver, we measured total momen-
tum and energy drift of a conservative system, and total momentum and temperature
deviation of a dissipative system.
As mentioned before, all forces in the DPD formalism are central, thus the total
momentum q =

∑
i |mivi| should be conserved. Due to numerical noise, momentum

conservation cannot hold exactly. This could violate the hydrodynamic consistancy
of the simulation. A good algorithm should therefore yield only small fluctuations
in the total momentum.
If η and σ are set to 0, the force field reduces to the conservative force FC and
the total energy should be constant. Although the eventual loss or gain of energy
due to numerical inaccuracies would be corrected, once the dissipative forces are
reintroduced, a good algorithm should still hold in the conservative regime. The
usual way to quantify erroneous energy flucuations in MD simulations is to calculate
the energy drift

∆E(t) =
E(t)− E(0)

E(0)
(4.1)

where E is the sum of potential energy Epot = 1
2

∑
i,j φ(rij) and kinetic energy

Ekin = 1
2

∑
i miv

2
i at time t. A good numerical solver should yield a small energy

drift without significant trend.
An analogy to the energy drift for the dissipative regime is the temperature error

∆T =
|Ttunde − Tmeasured|

Ttuned

(4.2)
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whereby Ttuned is given by relation 3.10 and

Tmeasured =
2

n
Ekin (4.3)

with n specifying the number of degrees of freedom (number of particles multiplied
by the dimension of particle space).

Conservative system

Figure 4.1 shows the time evolution of total momentum and energy drift for a system
intialized with total momentum 0rc/τ , total energy 23731.930kT and random particle
positions. The system has been iterated for 0τ ≤ t ≤ 80τ with stepwidth ∆t =
0.04τ (2000 iterations). As one can see, the algorithm accumulates energy, but not
momenta.
The total momentum fluctuates between 0 and 7 × 10−13rc/τ (average is 2.558 ×
10−13rc/τ), which is considerably small compared to the average momentum per
particle (2.161rc/τ) and is thus considered a minor artefact.
The energy drift increases almost linear from -0.75% to 2% over 2000 iterations –
thus, during a longer run, the conservative system gets heated. We could recude
the energy growth by decreasing the timestep. However, the timestep is one of
the limiting factors for the accessible simulated timespan. Furthermore, with the
introduction of the DPD thermostat for all following simulations, the energy surplus
is regulated anyway. Compared with the Euler integrator, that was the original
algorithm in DPD simulations [35, 48], the performance of our algorithm is actually
quite promissing: in our simulation, the energy increases linear with 6.749kbT/τ ,
while the use of an Euler integrator with the same stepwidth leads to an exponential
increase with a doubling time around 2.5τ – after only 11 iterations, the energy drift
reaches 100%. Thus, we also consider the energy drift in our simulation as a minor
artefact.

Dissipative system

For the dissipative system, we made simulation runs with a varying stepwidth ∆t
between 0.02τ and 0.06τ from t = 0τ until t = 80τ . 0τ to 5τ has been considered
as the transient time, and was therefore not taken into account for the analysis.
For ∆t = 0.04τ , total momentum of the dissipative simulation varied between 1.5×
10−14rc/τ and 5.5×10−13rc/τ (2.386×10−13rc/τ on the average). Thus, no additional
numerical fluctuations are introduced by FD + FR. We also found, that the step
width ∆t has no significant influence on the magnitude of numerical fluctuations
(see table 4.1).
The average temperature error increases quadratic with the step width (see figure
4.2). As a compromise between accurate and fast simulations, we chose a step
width of ∆t = 0.04τ for the forthcoming simulations. With this steo width, the
temperature error is less than 5%.
We also compared two types of noise for the random term FR: Gaussian distributed
noise and uniform noise with the same standard deviation. No significant difference
could be observed in the outcome of these simulations. As uniform distributed
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Figure 4.1: Total momentum and energy drift for a conservative pure aqueous sys-
tem.

∆t max. mean
0.02τ 4.1743× 10−13rc/τ 1.4381× 10−13rc/τ
0.04τ 5.5025× 10−13rc/τ 2.3859× 10−13rc/τ
0.05τ 9.3583× 10−13rc/τ 4.4859× 10−13rc/τ
0.06τ 5.4772× 10−13rc/τ 1.7897× 10−13rc/τ
0.07τ 4.3885× 10−13rc/τ 1.7386× 10−13rc/τ
0.08τ 4.9489× 10−13rc/τ 2.3554× 10−13rc/τ

Table 4.1: Numerical fluctuations in the total momentum of the conservative system
for different numerical step sizes ∆t.

random numbers are faster to calculate, we will perform most of the forthcoming
simulations with the latter type of noise.

4.1.2 Estimation of transient time

We can estimate the transient time by means of the fluctuation dissipation theorem
that has been discussed in section 3. If we set up the system in a random initial
condition (random particle position, 0 initial velocity), chances are, that the poten-
tial energy of the system is high compared to its equilibrium value. According to
the fluctuation dissipation theorem, the system will respond linear to the amount of
the perturbation, hence the relaxation will be exponential in time. Figure 4.3 shows
the relaxation of total energy for the system of the last section with ∆t = 0.04τ .
After approxiamtely 3 time units, the total energy is within the range of equilibrium
fluctuations.
To see, whether this value is really a good estimate for the transient time, we also
observed the evolution of the velocity distribution for our system. For a system in
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Figure 4.2: Average and standard deviation of the temperature error ∆T as a func-
tion of numerical stepwidth ∆τ .
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Figure 4.3: The total energy evolution of an aqueous system of size 10 × 10 ×
10 with step width 0.04τ follows an exponential decay (fitted to the data). After
approximately 3 time units, the system has reached an equilibrium state.

thermodynamic equilibrium, the distribution of velocities is a stationary Maxwell
distribution [45]. Figure 4.4 shows the time evolution of the velocity distribution
from t = 0.0τ to t = 4.0τ . Initially, particles feel a strong acceleration due to the high
potential energy in their initial state. After only four interations the distribution
already obeys its equilibrium shape, but the position of the peak and the variance
are too high. At time t = 1.5τ , the velocity distribution has reached its equilibrium
shape. It is interesting that the velocity distribution equilibrates faster than the total
energy. In other words, the kinetic energy equilibrates faster than the potential one.
The only possible cause for this is an overdamping of the system: potential energy
is transformed to kinetic energy, but kinetic energy is dissipated faster than it is
produced.

4.1.3 Pair correlations and phase transitions

A second distribution that gives insight into our system is the radial distribution
function g(r). This pair correlation function expresses the density of particles on a
sphere with radius r around another particle, averaged over all particles. It can be
approximated by a histogram over spherical shells with width ∆r:

g(r) =
n(r, r + ∆r)

4Nπr2ρ
(4.4)
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Figure 4.4: Time evolution of the velocity distribution during transient time. After
only a few iterations, the distribution ressembles the characteristic Poisson distribu-
tion of statistical mechanics.

where n(r, r+∆r) is the number of particles in the shell with radius r and N denotes
the total number of particles. n(r, r + ∆r) is devided by the area 4πr2 of the shell,
simply because more particles are expected to lie in the shell if the radius increases.
We further devide by the average particle density ρ to ensure that g(r) goes to one
when r goes to infinity.
For a perfect crystal g(r) would exhibit a series of peaks characteristic to the
cristalline structure of the crystal. For a liquid, g(r) is less structured due to the
thermal motion of particles. It still exhibits peaks at small values of r. However,
at longer distances, particle positions become less correlated, the peaks get broader
and their magnitude is reduced. Figure 4.5 shows the radial distribution function
for the pure aqueous system at different temperatures1.
As expected, g(r) shows several peaks that are more distinguished, the lower the
temperature of the system is. For unit temperature 1kbT , only two peaks are sig-
nificantly above the noise level, the first located around 0.875rc, the second around
1.6rc. For lower temperatures, further peaks can be observed. One might expect
to find a phase transition for a critical temperature below which the system forms
a crystal. However, even for temperature 0kbT we could not find any crystaline
structure. Instead, correlations still tend to disappear for longer particle distances.
The cause for this might be that the system is frustrated – hence glass-like – and
does not relax to its crystaline state within reasonable simulation times. Trofimov
suspects this to be an artefact of the periodic boundary conditions of the simulation
and points out how g(r) changes with ρ [43].
An alternative approach to decide on fluid solid phase transitions is to analyze the

1We made a mistake in the key of figure 4.5: the analyzed temperatures are: 0.25kbT instead
of 0.5kbT , 0.0625kbT instead of 0.25kbT and 0.015625kbT instead of 0.125kbT .
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Figure 4.5: Radial distribution function g(r) for different temperatures. The lower
the temperature the stronger are the correlations – structures – in the system. How-
ever, even for temperature 0kbT , correlations vanish over long particle distances.

mean square displacement of particles in the system. The mean square displacement
is defined by

msd =
〈
|ri(t)− ri(0)|2

〉
(4.5)

where the brackets denote the ensemble average over all particles in the system.
For very short times, the msd grows quadratic in time. However, once a particle
approaches one of its neighboring particles, it is hindered by the interactions between
the two. As a consequence, the growth of the msd may be saturated. In the gas
phase, the msd still grows quadratic with time, although slower than for the ideal
gas. In a fluid, the msd grows linear with time, and, finally, in a solid, particles
nearly never exchange their positions, thus, the msd saturates to a constant.
We can measure the msd straight forward to its definition. However, we have to be
carful that boundary effects do not disturb the result. Therefore, we stop the calcu-
lation when the displacement of a single particle on the simulation exceeds half the
size of the system. Before we measure, we let the system relax until the temperature
error is less than 5%. It should be noted, however, that for low temperatures this
might still correspond to the transient of the system, as temperature fluctuations
become less when temperature is decreased. If this is the case, the msd will show
a negative curvature, as particle motion slows down as the system approaches its
equilibrium.
Figure 4.6 shows the mean square displacement as a function of time for different
temperatures ranging from 0.0kbT to 1.0kbT

2. For high temperatures (0.25kbT to
1.0kbT ) the msd saturates to a straight line characteristic for fluids. A numerical
fit yields a gradient of 1.201r2

c/τ for 1.0kbT , 0.214r2
c/τ for 0.5kbT and 0.011r2

c/τ for
kbT = 0.25. This gradient is directly related to the self-diffusion constant of the
fluid [45]:

D = lim
t→∞

1

6t
msd(t) =

1

6

d

dt
msd (4.6)

2Figure 4.6 shares the mistake of figure 4.5. The correction is given in footnote 1.
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Figure 4.6: Mean square displacement for temperatures ranging from 1.0kbT to
0.0kbT .

For lower temperatures (figure 4.6, bottom) shows the mean square displacement for
6.25×10−2kbT and 1.5625×10−3kbT . In these cases, the system is still in a transient
and possesses to much kinetic energy, when we start the the measurements. Due
to the ongoing decrease of kinetic energy, the graphs for the msd have a negative
curvature. We performed simulations until t = 80τ to decide, whether the msd
approaches a finite value. However, even for large t, the linear function fitted to the
data had a positive gradient.

4.1.4 Summary

In this section, we used the DPD formalism to analyse pure aqueous systems. These
simulations had two purposes. First, the pure water system is best for validation of
our implementation. Second, we measured several properties of the system, that we
will use for further calibration.

We did the validation both for conservative and dissipative systems. We could
show that for DPD standard parameters (kbT = 1, rc = 1, ρW = 3.0r−3

c , aWW =
25kbT ) total momentum is conserved up to 10−12rc/τ which is close to the numerical
resolution. We observed a slight trend in total energy for the conservative system.
However, we do not expect this trend to introduce noteworthy errors, once the
dissipative thermostat is used to equalibrate energy. For the dissipative system,
we found that the difference between measured and tuned temperature depends
quadratic on the numerical step width. For step widths commonly used in DPD
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simulations, we estimated this error to be less than 5%. We estimated the transient
time of the pure aqeous system at 1kbT around 3τ for a step width of 0.04∆τ .
From the total energy evolution and the velocity distribution, we could estimate the
transient time τtrans. For 1kbT we obtained τtrans < 3τ . We furthermore analyzed
the radial distribution function and the mean square displacement of a pure aqueous
system for various temperatures. Both of them did not show sharp transitions
between a liquid and a solid phase.

36



4.2. Micellar system

4.2 Micellar system

To relate the simulations to experimental knowledge, we calibrate these parameters
to the surfactant sodium heptylsulfate Na+C7H15SO−

4 . However, the procedure we
present here can be easily adapted to fit other surfactants like those in table 2.1.
We first relate the length scale rc and time scale τ of our simulation to the scales of
the physical system. Then, we try to derive interaction parameters aij from known
values (N, CMC, ∆G) of our system. The procedure we describe is orientated on
the work of Groot and Rabone [54] but differs in the set of mesoscopic parameters
that are fitted.

4.2.1 Physical length and time scale

We choose a coarse graining where heptylsulfate is represented by one head and
one tail particle (see figure 4.7). Heptylsulfate is known to form spherical micelles
of aggregation numbers around 22 with a radius approximately the length of the
hydrocarbon chain – given as (1.5 + 7× 1.28)Å= 10.46Å. To fix the physical length
scale rc of our model, we set the radius of a micelle in our simulation to 1.5rc. This
is a reasonable compromise between detailed representation and a physical relevant
system size. From this relation we obtain the physical length scale of our simulation:

1rc represents 6.97Å. With r3
c =̂339Å

3
and a chosen water density of ρW = 3r−3

c , we

find that the volume per water bead is 113Å
3
. The molecular volume of real water

is 30Å
3

[54]. Thus, one DPD bead lumps together 3.76 water molecules on the
average. This value is called the coarse graining parameter (usually denoted Nm)
and is a common numner to express the level of coarse graining for DPD simulations.
Typically, Nm is between 3 and 5.
Knowing Nm, we can deduce a unit of concentration:

1mol/l =̂
NANm

ρW

(69.7nm/rc)
3

(108nm)3
(4.7)

where NA is the Avogadro number. We find that in our model, 1mol/l is repre-
sented by 0.256 particles per unit cube. From our analysis of the closed association
model, we know that only 4% of the surfactant is micellized when the surfactant

C
C

C
C

C
C

C

O

O S

O

O−

Figure 4.7: The surfactant heptylsulfate C7H15SO−
4 and our coarse grained DPD

representation by one head and one tail bead connected by an elastic spring.
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Figure 4.8: System states for three different surfactant concentrations. Amphiphiles
are shown in yellow (tail beads) and green (head beads), water beads are not shown.
The pictures are not the result of simulations, but show what has to be achieved
by the calibration. Values are obtained from the closed association model (see
text). System size is (21rc)

3. For [S]T = CMC (left panel), one micelle of 22
surfactants forms while 484 surfactants are in bulk phase (4% micellization). For
[S]T = 2CMC (middle), around 21 micelles are found and 550 surfactants are in
bulk phase (45.5% micellization). For [S]T = 3CMC (rigth), one finds 43 micelles
and 572 free surfactants.

concentration equals the CMC. To model a system at the CMC (5.632× 10−2 parti-
cles per r3

c ), that contains only one micelle, we would need a simulation box of size
approximately (21rc)

3 that holds 506 surfactants and approximately 27000 water
particles (to result in a average particle density of 3r−3

c ). Snapshots of such systems
for different surfactant concentrations are shown in figure 4.8.
The time scale of our model is related to the length scale by the self-diffusion of
water that has been analyzed in section 4.1.3. For an equilibrium temperature of
1kbT (ν = 4.5, σ = 3.0) we measured a self-diffusion constant of 0.2002r2

c/τ . When
we relate this to the real self-diffusion of water given as (2.43± 0.001)× 10−5cm2/s,
we can calibrate the physical time scale of our model. Some care has to be taken
here, because in our model, one DPD bead represents 3 to 4 water molecules. It has
been shown by Groot and Rabone that the physical and real diffusion of water are
related by Dexp = NmDsim [54]. We therefore obtain

τ = 3.76
0.2002r2

c

2.43× 10−5cm2/s
= 3.76

(0.2002× 6.97nm)2

243nm2/s
= 150.49ps (4.8)

Groot and Rabone obtain a physical time scale around 88ps [54]. The difference
can be explained by the water water bead interaction of 76kbT they used (and
for which they measured a diffusion constant of 0.1707r2

c/τ), whereas we used the
standard parameter 25kbT from [38]. Although the value of 76kbT seems to be
closer to the physical system, we have chosen the standard parameter to have more
comparable results. Let us again illustrate which scale of the physical system can
be catched by our model. From section 2.2.2, we know that monomer association
and dissociation happens in the order of nanoseconds (k− = 7.3×108s−1, and hence
1/k− = 1.370ns). We should therefore expect to find monomer associations and
dissociations approximately every 9.104 DPD time units (228 iterations).
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4.2. Micellar system

We have seen from the above calculations that our DPD model can capture the
kinetics of heptylsulfate and probably short chain surfactants in general in the in-
teresting length and time scale. The necessary system size to capture the system
at the CMC is already at the upper bound of what is feasible in DPD simulations.
However, the situation gets rapidly better for higher surfactant concentrations. For
comparision, if we want to model sodium dodecylsulfate (NaC12H25SO4)—assuming
the same coarse graining parameter Nm = 3.76—a system size of (126rc)

3 holding six
million particles would be necessary to capture one micelle at the CMC. Monomer
dissociations occur every 664.50 DPD time units, or 16612 iterations. The runtime
of our simulations to capture the same kinetic events would therefore increase by
four orders of magnitude. This is certainly beyond the scope of our model.

4.2.2 Parametrization

Once the physical scale of our model is known, we can try to fit the interaction
parameters of our model to empirical data of the system. We are interested in
concentration regimes where heptylsulfate forms spherical micelles of aggregation
number around 22 and a radius of r = 1.5rc. This means, that the average head
distance in the micelle will be r∗HH =

√
4πr2/22 = 1.133rc. At this distance, the

resulting potential energy between two head groups should be the same as for two
water particles: φHH(r∗HH) = φWW(r∗WW) From the first peak in the radial distri-
bution function, we know that rWW(r∗WW) = 0.875rc. We found that the desired
potential is approximately achieved if we set rc

HH = 1.5rc and aHH = 37.5kbT . Un-
der the assumption that head particles have the same hydrophilic behavior as water,
we set rc

HW = rc
WW = 1rc and aHW = aWW = 25kbT .

We have now specified all necessary parameters for the water and head particles,
respectively. We need to specify three further interaction potentials for the tail par-
ticles. To estimate these values, we would need to relate the free energy change
∆G0

mono of surfactants in bulk phase and micellar phase to the interaction poten-
tials φTT, φTH and φTW. However, a rigorous calibration to capture all physical
properties of a micellar system is a time-consuming endeavor. Until this point, it re-
mains even unclear whether the softcore potentials usually used in DPD simulations
can successfully capture all important kinetics of a micellar system. Unfortunately,
the project our work is embedded in did not allow to spend much time and efford
on method development. Although we undertook several attempts to calibrate our
model, we have not been able to accomplish the task in the given time. While
we will continue this analysis in future work, we will proceed with an uncalibrated
model for the remainder of the simulations. The parameters of this model have
been achieved by try and error to catch the properties of micelles necessary to serve
as a protocellular container—namely, we tried to find a parameter set that allows
micelles to grow and divide after reaching a critical size.

The bond interaction of the H−T bond has been set to rb = 0.5rc, b = 125kbT . The
effective bond length, however, will increase because of the additional bead repulsion.
To ensure that micelles maintain their spherical shape we captured a surfactant
parameter NS < 1/3 with the tail tail interaction rc

TT = 0.5rc and aTT = 12.5kbT .
Finally, head tail and water tail interactions have been set to rc

HT = rc
WT = 1.5rc,
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and aHT = aWT = 37.5kbT , which is equal to the head head interactions. With these
values, the effective bond length for an isolated H−T pair evaluates to 0.643rc.
Table 4.2 summarizes all interaction parameters used.

W H T
W 1.0, 25 1.0, 25 1.5, 37.5
H 1.0, 25 1.5, 37.5 1.5, 37.5
T 1.5, 37.5 1.5, 37.5 0.5, 12.5

Table 4.2: Interaction parameters (rc
ij, aij) as multiples of rc and kbT for a micellar

system consisting of water W, amphiphile head H and tail T beads. The bond
interaction between H−T is set to 125rc, 0.5kbT .

4.2.3 Equilibrium micellar system

With the interaction parameters described in the last section, we performed simula-
tions in a box of 12.5× 12.5× 12.5r3

c intialized randomly with 212 surfactants and
5433 water beads which corresponds to 2 times the CMC (particle density 3.0r−3

c ).
Simulations where performed for 0τ ≤ t ≤ 350τ
To obtain micellar size distributions from our model, we need to define a criterion
that distinguishes micelles from monomers in the bulk phase. We decided that every
two monomers, whose tail bead distance is less than 1.0rc participate to the same
micelle. As 1.0rc is smaller than two times the effective bond length, this measure
will accurately seperate nearby proper micelles. For monomers in bulk phase any
such cutoff is rather arbitrary. Establishing this criterion, we adapted the simple
flood-filling algorithm (see e. g. [59]) to identify micelles.
Figure 4.9 shows the initial condition and snapshots of the time evolution. The evo-
lution of the micellar size distribution is plotted in figure 4.10. Initially, the system

Figure 4.9: Self assembly of micelles in aqueous solution. Amphiphiles are shown
in purple (tail beads) and red (head beads). System states are shown for t = 0τ ,
t = 12τ , t = 100τ , and t = 200τ .

is composed almost only of monomers along some dimers and trimers. During the
simulation, monomers quickly form submicellar assemblies. These assemblies suc-
cessively aggregate into bigger structures until spherical micelles occur. After 160
time units the size distribution reaches a stationary distribution with final aggre-
gation numbers between 25 and 35 and a radius of approximately 3.5rc. Hence, in
our simulation, micellization follows a Smolouchowsky path to equilibrium (see 2.4)
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Figure 4.10: Evolution of the micellar size distribution for 0τ ≤ t ≤ 375τ (7500 iter-
ations). After 160 time units the size distribution reaches a stationary distribution
with final aggregation numbers between 25 and 35.

rather then a Becker-Döring like. Interestingly, between t = 180τ and t = 290τ two
micelles temporarily fuse into an assembly of aggregation number 49. This assem-
bly, however, is unstable and divides again. Fusion and division occur several times.
During this process, monomers amoung the assemblies are exchanged. Thus, we can
clearly see, that in this experiment, the aggregation number of assemblies has an
upper limit.

Furthermore, we could not observe monomer dissociations from assemblies in the
equilibrium regiem of the system: once inside a micellar aggregate, an amphiphile
remains in the aggregate for the remainder of the simulation. As a consequence, the
equilibrium distribution of our system consists only of micelles. No monomers are
found in the bulk phase. The equilibrium distribution in our simulation is not only
stationary but even steady.

4.2.4 Non-equilibrium micellar system

In the forthcoming simulations, we drive the micellar system out of its equilibrium by
the introduction of chemical reactions. In this way, catalytic reactions might allow
growth, destabilization and eventually fission of micellar aggregates. According to
the prebiotic scenarios we will represent in the next sections, we defined a catalytic
reaction that transforms precursor molecules into amphiphiles in the vicinity of
existing surfactants.

Precursor molecules are modeled as single DPD particles X that can undergo the
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autocatalytic reaction

X + X
T−→ H−T (4.9)

T1H 1

X

To localize the catalytic effects within a small region surrounding the micelle, we have
choosen to make the tail part of the amphiphiles catalytic. Spontaneous reaction
rates have been set to 0.0, whoch allows us to focus on the autocatalytic kinetics in
the model. Catalyst radii are set to 1.0rc with a maximal catalytic rate of 1.0.
We also tried reaction kinetics, where the head part of the surfactants serve as
catalysts. However, with these settings, results became less clear than with the
above reaction scheme. Using the same catalytic range of 1.0rc, new amphiphiles
where formed comparatively far away from the micellar surface. These monomers
did not join the existing aggregate but often formed new aggregates with other
monomers in the bulk phase. We could reduce the probability of these events by
reducing the catalytic range ro 0.5rc. However, the overall catalytic effect decreases
cubic with the catalytic radius. Thus, simulation times were drastically increased,
when using amphiphilic heads as catalyst with a short ranged catalytic effect.
To link to later simulations of the Lidip World, we decided to allow the precursor
to diffuse relatively unhindered through the system. By making them weak polar
particles, we avoid that the precursors themself assemble into droplets in the aqueous
phase. Doing so, they can approach the micelle as individual particles and newly
synthesized amphiphiles can enter the micelle one by one. We model these weak
interactions with the following interaction parameters in addition to those used in
table 4.2:

W H T X
X 0.5, 12.5 0.5, 12.5 0.5, 12.5 1.0, 25

With these additional parameters, we performed simulations in a space of size 7.5×
7.5× 7.5r3

c , initialized randomly with 1265 water and 210 precursor beads. A single
initial amphile has been placed in the center of the box. Note that the average
particle density ρ ≈ 3.5r−3

c is higher than in the previous simulations. However,
if we reduce the particle density, the system pressure would drop due to the weak
precursor interactions. In order to constantly drive the system out of equilibrium,
we introduce a particle exchange in the corner of the simulation space. In a spherical
region of radius 2.0rc, water beads are exchanged by precursors with a probability
of 1× 10−3 per particle and time unit.
We run the simulation for 250 time units. Snapshots of the evolution are shown in
figure 4.11. We observed that new surfactants are synthesized rapidly in the vicinity
of the initial amphiphile. These surfactants form a spherical micelle, that grows in
size by successively incorporating newly formed monomers. After a certain time,
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4.2. Micellar system

(a) t = 25τ (b) t = 37.5τ (c) t = 50τ

(d) t = 62.5τ (e) t = 75τ (f) t = 87.5τ

(g) t = 100τ (h) t = 150τ (i) t = 210τ

Figure 4.11: Autocatalytic growth of a micelle. Precursors (white) are transformed
into new amphiphiles (red and purple) in the vicinity of present amphiphiles. An
initial micelle forms (a) and successively incorporates new surfactants (b-e). The
spherical shape becomes unstable and the assembly turns into a rodlike shape (f).
This shape elongates while the simulation proceeds (g-i).
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the aggregation number of the micelle is too high to maintain a spherical shape and
the micelle turns into a rodlike aggregate (f). In the elongated form, the micelle
temporarily tends to dissociate into smaller aggregates (g). However, in none of the
performed simulation runs, the eventual fission into two seperate aggregates could
be observed. Instead, the aggregate rearranged into its rodlike shape again and
continued its growth (h-i).

It is interesting that the rodlike aggregate does not form in the equilibrium system
analyzed in the previous section. Even if we turn of the precursor supply at some
point, to allow the autocatalytic system to settle in an equilibrium, it keeps its
rodlike shape. This means that the system exhibits hysteresis: the final state de-
pends on the kinetic pathway, i. e. on the history of the simulation. An explanation
for this behavior is the following: in the equilibrium state, micellization follows a
Smolouchowsky route. Monomers assemble into small aggregates that successively
join into bigger and bigger aggregates. With a certain size, however, the energy bar-
rier for two micelles to join becomes large because of the comparatively strong head
head repulsion. In the non-equilibrium scenario, on the other hand, amphiphiles are
synthesized one after the other, and are individually incorporated into the assem-
bly. In this sense, they follow the Becker-Döring route. The energy barrier for a
single amphiphile is smaller then in the former case. It becomes essentially inde-
pendent of the aggregation number, once the rodlike micelle has formed. Thus, the
non-equilibrium system can overcome the maximal aggregation number found in the
equilibrium system.

We tried to force the elongating aggregate into a fission scenario by increasing the re-
pulsive force between the head beads, because a stronger head repulsion was thought
to increase the ideal curvature and thus energetically favors small aggregates. How-
ever, even for high head head repulsions (aHH = 75kbT ) we could not find actual
fission. The aggregate remained rodlike. Only the distance between surfactants
increased. Tail beads are seperated by more than rc

TT in this configuration. The
potential energy contribution of these tail pairs is zero. Tail particles can therefore
move freely in the interiour of the rod, but there is no sufficient driving force to
actually push the tails beads together to transform the elongated aggregate into
smaller spheres.

We then decided to introduce an explicit attractive force between two tail particles.
This mimicks the van-der-Waals attraction between the hydrocarbon chains of the
surfactant. Note also that in the derivation of softcore potentials (section 3.3) we
find remainders of this attraction in the measured effective potential. We achieved
this attraction by replacing the linear force used before by a stepwise linear function.
To be precise, we define the tail tail interaction force FC(r) by linear interpolation
between the points (0,12.5), (0.5,-3.75), (0.75,-1.875), (1.5,0). The interactions be-
tween tails and other particles remained unchanged. See figure 4.12 for a plot of all
used interaction potentials.

With the modified tail interactions, we reran the experiment of autocatalytic micellar
growth. Figure 4.13 shows snapshots of the time evolution of the system. Again, a
spherical micelle forms around the initial surfactant (a). The micelle grows in size
until the spherical micelle becomes unstable (e) and elongates into a rod again (f).
Unlike in the last experiment, the rodlike shape is unstable due to the attractive
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Figure 4.12: Interaction potentials for the micellar fission scenario. The potentials
are integrals of stepwise linear interaction forces (see text).

tail interactions: tail beads concentrate in the cap regions of the elongated micelle,
leaving a gap in its center. This gap induces the division of the rodlike aggregate
into two smaller assemblies (g). With the constant supply of new precursors, growth,
destabilization and fission continues while the simulation is running (h-i).
The size distribution of micelles as a function of time is plotted in figure 4.14.
We found aggregation numbers between 25 and 55. Only the first micelle in our
simulation reached an aggregation number of more than 60. We further observed,
that the growth of individual micelles is approximately linear in time, although an
exponential growth might be excepted due to the autocatalytic reaction scheme 4.9.
The growth however is limited by the diffusion of precursors which is linear in time
within aqueous phase (see section 4.1.3). During the whole simulation, the growth
rate decreases and the replication of micelles slows down. This might be due to
the consumption of precursors when their initial concentration is higher than their
supply.

4.2.5 Summary

In this section, we have related the length and time scale of our model to the physical
scales of a sodium heptylsulfate system. It turned out, that our model operates in
a physical regime where micellar kinetics can accurately be captured. We related
properties of the real system (surfactant concentration, number of micelles) to our
model and discussed possibilities and difficulties concerning the calibration of the
method.
Unfortunately, we could not develop a calibrated model in the given time. Thus,
we presented the parameter set of a toy model, which we developed to capture the
micellar kinetics envisioned in the Lipid World scenario. It turned out however,
that this model produces artefacts when applied to an equilibrium surfactant sys-
tem. Namely, we could not observe monomer dissociations from micelles. As a
consequence, there are no free monomers in the bulk phase, once the simulation has
reached a steady state.
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(a) t = 25τ (b) t = 37.5τ (c) t = 50τ

(d) t = 62.5τ (e) t = 75τ (f) t = 87.5τ

(g) t = 100τ (h) t = 150τ (i) t = 300τ

Figure 4.13: Fission of spherical micelles (color scheme is the same as in figure
4.11): Driven by the synthesis of new amphiphiles, the initial micelle grows until
its spherical shape becomes unstable (e). Reaching this size, it rearranges into an
elongated, rodlike micelle. Amphiphile tails concentrate at the caps of this rod,
forming a gap at the center (f). This gap initiates the fission of the micelle (g), that
leads to two micelles of initial size. This process continues when new amphiphiles
are formed (h-i).
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Figure 4.14: Evolution of micelle sizes for successive micellar fissions. Every line
depicts the size of an individual micelle. Vertical lines correspond to actual fission
events.

We also applied our model to a system, that is driven out of its equilibrium by
the autocatalytic synthesis of new surfactants from supplied precursors. Contineous
supply of precursor lead to the formation of a rodlike micelle. This micelle is stable
even if the precursor support is eventually stopped. We discussed an hystersis effect
in the equilibrium solution depending on the actual kinetic pathway which lead to
the equilibrium state.
Finally, we could force catalytic growing micelle to divide by introducing attractive
interaction between the tail beads of amphiphiles. Doing so, we could find model
parameters that allowed the growth, destabilization and fission of sperical micelles,
like it is envisioned in the Lipid World theory.
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4.3 The Lipid World

In this section, we analyze the Lipid World scenario. Rather than to rebuild a com-
plete GARD model in our extended DPD model, we focus our analysis on the conse-
quences implied by the introduction of space into the theory of Lancet et al. It has
been pointed out in section 1.1 that interesting spatial phenomena occur already for
binary amphiphilic assemblies, that is, for aggregates composed of two sorts of surfac-
tants. Therefore, we restrict our simulations to the case of two catalytically interact-
ing amphiphiles H1−T1 and H2−T2. In particular, the catalytic network we study
expresses cross-catalytic activity, i. e. the two amphiphiles mutually catalyze each

other:

X + X
T2−→ H1 −T1 (4.10)

X + X
T1−→ H2 −T2 (4.11)

T1H 1

H 2 T1

X

We

use the same catalytic rates as in the last section: Spontaneous reaction rates are
set to 0.0, catalyst radii are set to 1.0rc with a maximal catalytic rate of 1.0.

Interaction parameters for these simulations were the same as in section 4.2.4 in-
cluding the attractive tail in the T−T potential. Both amphiphiles are described
by identical interactions with respect to water and amphiphiles of the same type
(e. g. φH1H1 = φH2H2 = φHH). We further set φH1T2 = φH2T1 = φHT Hence, the
introduction of the second amphiphile leaves us only with two more interactions to
specify: φH1H2 and φT1T2 . These parameters are subject to variation in the following
experiments.

We are interested in the formation of domains and the diversity of amphiphile com-
positions throughout the micelles, i. e. the heterogeneity of the system. We define
the global heterogeneity as the weighed sum of the Shannon entropies per micelle:

H = − 1

n

N∑
i=1

ni

NG∑
j=1

pij

ni

logNG

pij

ni

(4.12)

where N is the number of micelles of size ni, n = n1 + . . . + nN , NG the number
of different types of surfactants and pij the number of surfactants j in micelle i. H
lies in the interval [0, 1], whereby 0 is achieved for a system of micelles, that have
only one type of surfactants, whereas H = 1 is achieved when the amphiphiles are
distributed equally over the micelles. Wheighing by the micellar size, we ensure
that bigger micelles contribute more to H, thus new monomers that are not yet
incorporated into an assembly disturb the measurement less.

We used a localized variant of this measure to quantify domain formation in terms
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of heterogeneity within one micelle:

HL = − 1

n

n∑
i=1

NG∑
j=1

pij logNG
pij (4.13)

where pij signifies the number of surfactants of type j whose tail beads are closer
than 0.5rc to the tail of surfactant i, and n and NG are defined as above. HL, too,
ranges between 0 and 1. High values correspond to high Shannon entropies: the
amphiphiles are distributed heterogeneously over the micelle. Low values signify a
clear formation of domains. The exact value of HL depends on the radius we use to
determine the neighborhood of tail particles (in our case 0.5rc). Tendencies in HL,
on the other hand, are independent of this radius.
All following simulations have been performed with the following settings: system
size was set to 7.5 × 7.5 × 7.5r3

c (we were only interested in the surface and fission
of one micelle—hence, a small system is sufficient), water density ρW = 3.0r−3

c and
ρX = 0.25r−3

c if precursors are used. For every parameter set, we ran 20 simulations
to get significant results.

4.3.1 Strong head repulsion

In the GARD model amphiphiles are supposed to differ in the catalytic activity of
the head groups, while the amphiphile tails are supposed to be identical. Hence, it
seems straight-forward to vary only the interaction potential of unlike head beads
φH1H2 and set all tail interactions equal: φTiTj

= φTT for i, j = 1, 2. To identify
the influence of head repulsion on domain formation, we ran simulations with aH1H2

between 25kbT and 100kbT , keeping rc
H1H2

= 1.5rc constant. We initialized the
system with a micelle consisting of 15 surfactants of type 1 and 15 surfactants of type
2. No precursors have been used. Simulations have been run for t = 0τ to t = 100τ
(2500 iterations). The first 5 time units have been considered as transient. The
average local heterogeneities and their standard deviations are plotted in figure 4.15
against head head repulsion strength. Figure 4.16 shows snapshots of the respective
systems. The stronger unlike heads repel each other, the smaller becomes the
average local heterogeneity. However, the decrease is only small even for drastic
changes in the mutual repulsion. The strong standard deviation for HL suggests
that these domains constantly change and are not stable over time.
Next, we introduced the surfactant synthesis from precursors with mutual catalysis.
We initialized the system with a single surfactant (type 1) and provided precursors
by particle exchange as in section 4.2.4. Figure 4.17 shows the number of surfactants
and precursors against time. We can see that surfactant synthesis is approximately
linear in time, despite the autocatalytic character of the whole system (see section
4.2.4). The curves for the two amphiphiles follow each other due to the cross-
catalytic coupling. Once again, influx of new precursors is less than its turnover.
Thus, the precursor is consumed with the production of new surfactants. This is
not cricital, however, as we are only interested in properties of a single micelle and
single fission events, not in the dynamics over many generations.
As the variance of head repulsion did not form significant domains, the fission events
lead to mixed micelles with approximately the same surfactant composition. Figure
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Figure 4.15: Localized Shannon entrogy HL for different head head repulsion pa-
rameters aH1H2 . Stronger repulsion between unlike heads leads to the formation of
domains. As a consequence the localized entropy decreses.

(a) aH1H2 =
25kbT

(b) aH1H2 =
50kbT

(c) aH1H2 =
75kbT

(d) aH1H2 =
100kbT

Figure 4.16: Snapshots of binary mixed micelles for different head head repulsion
values. As aH1H2 increases, domains become more distinct. However, even for high
repulsion values, the separation is not sharp and single surfactants can be found in
the unlike domain.
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Figure 4.17: Number of surfactants and precursors against time. Surfactant con-
centration grows linear in time, while the number of precursors decreases. The
graphs of surfactant concentration (type 1 and 2) follow each other as a result of
the cross-catalytic coupling. The total number of of precursors and surfactants is
approximately constant.

4.18 shows snapshot of a typical micellar fission event. As expected, in the absence
of domain formation, surfactants are distributed homogeneously among the two
micelles.

Figure 4.18: Fission of a mixed micelle of cross-catalytic amphiphiles with high
mutual head repulsion (aH1H2 = 25kbT ). Snapshots are shown for t = 82.5τ , t = 85τ ,
t = 87.5τ , and t = 90τ . The two daughter micelles have approximately equal
surfactant composition.

4.3.2 Strong tail repulsions

Discussions with experimentalists [60] clearified, that domain formation (at least
on vesicles) is mainly due to the surfactant tails: Kinks in the comparatively long
hydrocarbon chains can hinder the close stacking with outstreched chains. This leads
to reduced van-der-Waals forces between the tails. We mimicked this phenomenon
in the second parameter set by setting all head interactions equal (φH1H2 = φHH)
and using pure repulsive tail interactions (without any attractive part). aT1T2 has
been set to 12.5, rc

T1T2
has been varied from 0.5rc to 1.0rc. Again, we initialized the

system with a mixed micelle of 15 surfactants of each type and followed the evolution
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of local heterogeneity. Figure 4.19 shows the evolution of local heterogeneity HL(t)
for different tail interactions, snapshots of the system for different interaction forces
and times are shown in figure 4.20. Both from figure 4.19 and 4.20, we can see that
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Figure 4.19: Localized Shannon entrogy HL against time for different tail repulsion
parameters rc

T1T2
. For all repulsions HL detects a strong domain formation. Only

the time needed for domain to form differs: the closer rc
T1T2

resembles rc
TT, the

longer it takes for domains to form.

the surfactants form significant domains on the micelle. We find domains for all the
interaction values rc

T1T2
between 0.5rc and 1.0rc. Only the time needed for domains

to form differs and is longest for rc
T1T2

= 0.5rc, where the unlike tail repulsion is
closest to the interaction between equal tail beads. In addition, we can see that the
micelle deforms after domains have formed (figure 4.20(d) and (e)): the spherical
micelles become elongated and form two centers for the respective amphiphiles. The
assembly resembles two overlapping smaller micelles—one for each type of surfactant,
respectively.
This observation justifies the assumption, that when growing, micelles will divide
along the interface between the two domains.To test this assumption, we repeated
the growth experiment of the last section with the second parameter set. We ini-
tialized a system with water (ρW = 3.0r−3

c ), precursors (ρX = 0.25r−3
c ) and one

surfactant of type 1. We ran simulations from t = 0τ until t = 500τ and measured
the number of micelles, H and HL for the cross-catalytic growing micelle. Snapshots
of the system are given in figure 4.21. The number of micelles and the evolution of
global homogeneity H is shown in figure 4.22. Like in the one-component experi-
ment (section 4.2.4) the assembly grows by incorporation of synthesized monomers.
After reaching a critical size, the spherical shape becomes unstable and the micelle
becomes rodlike (figure 4.21 (c)). Surfactants seperate on the surface of the assem-
bly: the elongated shape consists of two caps each one hosting only one type of
surfactant, respectively. Due to the crosscatalytic coupling, new amphiphiles are
formed near the phase of the other amphiphile type. These single monomers diffuse
through the unlike phase until they reach the phase of their respective type. The
bigger the phases are, the more probable isolated monomers approach each other
and initiate the formation of a new phase within the unlike phase.
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(a) rT1T2 = 0.5rc,
t = 5τ

(b) rT1T2 = 0.75rc,
t = 5τ

(c) rT1T2 = 1.0rc,
t = 5τ

(d) rT1T2 = 0.5rc,
t = 40τ

(e) rT1T2 = 0.75rc,
t = 40τ

Figure 4.20: Domain formation on mixed micelles for different tail tail repulsion
values. The stronger unlike tail repulsion, the faster domains form in the mixed
micelle ((a) to (c)). But even for low mutual repulsion, domains form after a longer
time ((d) and (e)).
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(a) t = 50τ (b) t = 100τ (c) t = 150τ (d) t = 200τ

(e) t = 250τ (f) t = 300τ (g) t = 350τ (h) t = 400τ

Figure 4.21: Growth of a mixed micelle with cross-acatlytic surfactants. The as-
sembly elongates into a rodlike shape and exhibits clear phase separation of the
two constituent surfactants. Eventually, the rodlike assembly devides into daughter
micelles which differ in surfactant composition.

In the mixed system, the elongated form is more stable than the one-component
system: the rodlike micelle elongates far beyond the size, where the one-component
micelle divided (figure 4.21 (d) and (e)). As the parameter sets differ only in the
absent attractive force between unlike tails, it seems reasonable to relate this sta-
bilization to the reduced overall attraction. However, this explanation seems coun-
terintuitive, as the absent attraction between domains should even promote fission
along the domain boundary. From figure 4.22 one can see that the elongated aggre-
gate finally splits. Compared to the one-component system, however, the micellar
division is not a sharp event. Instead, the aggregate fluctuates, which leads to an
oscillation in the (discretely) measured number of micelles. As a consequence, H(t)
fluctuates too (as the value is weighed by size and number of micelles). Nevertheless,
its drastic decrease witnesses that fission occurs along the domain boundaries and
that the resulting daughters differ in their composition. More detailed observations
showed that the seperation along the interface is very accurate: the only defects from
complete seperation of amphiphile types among the daughter micelles is caused by
newly synthesized monomers that did not diffuse to the other domain before the
fission was completed.

4.3.3 Summary

In this section, we analyzed micelles of surfactants with cross catalytic activity. The
cross catalytic network we have choosen can be understood as a minimal scenario
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Figure 4.22: Heterogeneity and number of micelles in the Lipid World system with
strong mutual head and weak mutual tail repulsions. Using these interactions, we
find domain formation on the surface of the micelles. The micellar division occurs
along the domain interface, which leads to a heterogeneous composition of surfac-
tants within the daughter micelles.

of the Lipid World theory. We were especially interested in domain formation in
mixed amphiphilic aggregates, as domains are known to play a possible role in fission
scenarios. We analyzed the influence of different parameter sets on the formation of
domains. We saw that the main interaction value responsible for domain formation
is the interaction between mutual surfactant tail beads. This is in agreement with
experimental results, but differs from the GARD model of the Lipid World, where
tail parts are supposed to be identical for all amphiphiles.
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4.4 The Los Alamos bug

We modeled the Los Alamos bug with the following components: water, surfactant
precursor, surfactant, sensitizer, PNA templates and PNA precursors. Water (W)
and sensitizer (X) are single DPD particles. Surfactants are modeled as amphiphilic
dimers: one hydrophilic head (H) and one hydrophobic tail particle (T) connected
by a covalent bond. Surfactant precursors are dimers of two hydrophobic particles
(T − T). Two different representations have been used to model PNA templates:
once, we connected hydrophilic bases (A and B) to an interconnected backbone
of hydrophobic particles (P), second, we connected hydrophobic anchors to a hy-
drophilic strand of PNA bases. The first alternative seems closer to reality, while
the latter simplifies the capture of certain PNA properties. In both cases, we used a
strand of four interconnected dimers for the template and two interconnected dimers
for the precursors.

This leaves us with seven different types of particles, for which we need to define
28 mutual interactions. We start by specifying parameters for water, amphiphile
head and tail particles and then choose the missing interactions according to these
parameters. For water, we adopt the interaction parameters proposed by Groot
and Warren—aWW = 25, rc = 1.0—which have become standard throughout the
literature[38]. In order to model surfactants which form micelles (surfactant pa-
rameter Ns < 1/3), we mimick a conical shape by aHH = 37.5, rc = 1.5 and
aTT = 25, rc ≈ 0.4. For the tail tail interactions, however, we generalize the in-
teraction as announced in section 3: FTT is a stepwise linear function defined by the
points (0, 25), (0.5,−3.75), (0.75,−1.875), and (1.5, 0). Head tail repulsion is set to
aHT = 37.5, rc = 1.5 and the spring force between two interconnected head and tail
particles is b = 125, rb = 0.5.

PNA is modeled as interconnected amphiphiles, thus the interaction parameters of
P are equal to those of surfactant tail particles, and A and B interact like surfactant
head particles. The affinity of the two complementary bases (A and B) is modeled
by a second attractive interaction—namely a stepwise linear force going through
the points (0, 37.5), (0.5,−10), (0.75,−5), and (1.5, 0). Bonds of the PNA backbone
have the parameters b = 125, rb = 1.0 both in the case of interconnected backbone
particles P as well as interconnected bases A and B. Finally, the sensitizer is
a hydrophobic particle with interaction parameters that allow it to diffuse freely
through the hydrophobic phase. Table 4.3 summarizes the choosen set of parameters,
figure 4.23 shows the resulting interaction potentials.

We used this model to study various aspects of the life cycle of the Los Alamos bug
as depicted in figure 1.3. In particular, our simulations address the spontaneous
formation of protocells (figure 1.3.1-2), the incorporation of resources (1.3.2-3), the
metabolic growth of the protocell (1.3.4-5), template reproduction, and finally fission
into two daughter cells (1.3.5-6). All simulations have been performed in three
dimensional space with periodic boundaries. σ was set to 3, γ to 4.5 (equilibrium
temperature 1kbT ).
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particles aij rc

hydrophile, hydrophile 25 1.0
hydrophile, hydrophobe 27.5 1.5

hydrophobe, hydrophobe (1)

particles aij rc

H,H 37.5 1.5
A,A 37.5 1.5
B,B 37.5 1.5
A,B (2)
X,T 25 0.5
X,X 25 1.0

Table 4.3: Generic and specialized interactions for the different particle pairs in our
simulation. Interactions for two hydrophilic particles (1) are described by stepwise
linear functions throught the points (0, 25), (0.5,−3.75), (0.75,−1.875), and (1.5, 0).
Likewise, complementary bases (2) interact by a stepwise linear function defined by
the points (0, 37.5), (0.5,−10), (0.75,−5), and (1.5, 0).
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Figure 4.23: Interaction potentials resulting from the parameter set denoted in table
4.3.

4.4.1 Self-assembly of the protocell

Using 20 surfactant molecules, 8 sensitizer particles, one PNA polymer consisting
of 4 backbone and 4 base particles and 1225 water particles, we observed the spon-
taneous self-assembly of a protocell (see figure 4.24). Thanks to the small size of
our system, the aggregation happens within a very short period: after 30 time units
(750 iterations), we already find a complete self-assempled protocell. This protocell
is stable and shows the desired features: sensitizer resides in the interior of the mi-
celle, while PNA sticks at its surface with the head beads exposed to the aqueous
phase.

4.4.2 Incorporation of resources

We now start to “feed” the protocell with metabolic resources. As a proof of concept,
we first feed the system with surfactant precursors only. In the region opposite to
the protocell, we exchange water particles with surfactant precursors (two water
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Figure 4.24: Self-assembly of the protocell. The diagrams show the state of the
system at times (a) t = 0τ , (b) t = 10τ , (c) t = 20τ , and (d) t = 30τ . Surfactants
are shown in green (head bead) and yellow (tail), sensitizers are shown in red, PNA
backbone in dark blue and PNA nucleotides in light blue.

beads with one precursor molecule). This particle exchange occurs with probability
5×10−5 per particle pair and time unit within a spherical region of radius 3rc (volume
≈ 113.1r3

c ) – thus we have an overall exchange rate of ≈ 1.696 × 10−2 surfactants
per time unit.

Because of their hydrophobic nature the precursor molecules tend to agglomerate
into droplets. The diffusion of such droplets is slower the bigger they are. This
initiates a positive feedback: the bigger the droplets, the slower they diffuse out
of the exchange zone. The slower they diffuse, the more likely they agglomerate
additional precursors. Thus, there must be an optimal exchange rate, that leads to
a high support rate of precursors. In general, when we increase the radius of the
exchange area but keep the effective rate constant, the agglutination of precursors
is reduced. However, we want to keep the exchange region small, in order to prevent
the non-continuous exchange events from disturbing the kinetics of the protocell.
Thus, we consider 3rc the maximal range of the exchange region. We both increased
and decreased the rate the precursor support. 5× 10−5 seemed to be the optimum,
for which droplets of precursor molecules assemble are provided with reasonable
speed, but are still small enough to diffuse. With this value, we measured precursor
droplets of around 15 molecules.

Once in the vicinity of a protocell, precursor droplets are immediately absorbed by
the micelle, because of their reduced chemical potential in the hydrophobic interior
of the micelle compared to the aqeous phase. Figure 4.25 shows an incorporation of
a procursor droplet into the micelle

4.4.3 Metabolism

Next, we introduce the part of the metabolism that transforms surfactant precursors
into actual surfactants. In the real chemical implementation of the Los Alamos
bug, the precursors are fatty acid esters. The surfactant breaks the ester bond
thereby producing fatty acid—the surfactant—and some aromatic molecule—which
is considered waste. Disregarding the production of waste, we model this reaction
by the scheme

T−T −→ H−T (4.14)
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Figure 4.25: Incorporation of precursors into the micelle. Due to their hydrophobic
nature, precursors aggregate into droplets, that get incorporated into the micelle as
a whole. The system is shown for (a) t = 27.5τ , (b) t = 30τ , (c) t = 32.5τ , and (d)
t = 35τ . Surfactants are shown in purple (tails) and red (heads), prucursor is shown
in yellow.

which reflects, that both parts of the ester are hydrophobic, while the resulting
surfactant is an amphiphile. For simplicity, the spontanous reaction rate is set to
0. The sensitizer acts as a catalyst with catalytic radius of 1.0rc and a maximal
catalytic rate of 1.0τ−1. This ensures that precursor transformation only occurs in
the vicinity of sensitizers, hence in the interior of the micelle. Using a protocell with
eight sensitizers, we observe an immediate transformation of precursors once they
are absorbed. The transformation of 15 surfactants happens in less than 2 time
units on average.

We also experimented with a scenario where the catalytic activity of the sensitizer
can interactively be turned on and off. This reflects the photoactivity of the sensitizer
which uses light energy to enhance the reaction. A controllable light source can
regulate the kinetics of the metabolism in the following way: when light is turned
off, the protocell collects precursors in its interior. After light is turned on, the
collected precursors are transformed instantaneously into surfactants. Thus, when
regulated by light bursts, the metabolic turnover is steplike rather than smooth.
However, the effect of this lightswitch is less suspected: Because of the droplet
formation of precursors, the micelle grows in spurts even if the sensitizer catalyzes
permanently.

In a later study, we will couple the functioning of the sensitizer with PNA: the
catalyst rate will depend on the amount and type of nearby bases. Applying this
coupling, the PNA will actually affect in the growth rate of the protocell—thus
turning the template into a real genome.

4.4.4 Genome replication

Replication of the genome is divided in two consecutive steps: hybridization and
polymerization. Hybridization denotes the alignment of short PNA precursors along
the template of the existing PNA strand. Polymerization is the reaction the turns
aligned precursors into an actual PNA strand (see figure 4.26).
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Figure 4.26: Schematic of hybridization and polymerization for the two different
PNA represenations. In the first case, the PNA backbone is modeled as a strand of
interconnected beads, with nucleotides attached to it; in the second case, bases are
interconnected and hydrophobic anchors are attached. In both cases, complementary
bases must align properly, before they can polymerize into a double strand.

Hybridization

The simplistic representation of nucleotides by one DPD bead only makes the hy-
bridization process somewhat hard to capture. Therefore, we tried several repre-
sentations of PNA (as described in section 4.4) as well as several mechanisms of
hybridization. In the real system, hybridization is due to hydrogen bonds between
complementary bases. In our toy model, we represent these hydrogen bonds by at-
tractive forces between nucleotide beads. Two different types for these attractions
have been probed: directed and undirected attraction.

Undirected force The undirected attraction between complementary nucleotides
is achieved by our generalized potential functions with the parameters listed in table
4.3 for A−A, A−B and B−B. Note that these interactions are only attractive
for complementary bases, otherwise purely repulsive.

Directed force In this variant, the attraction depends on the angle between the
two nucleotides with respect to their backbone (in case of connected anchors) or an-
chor particles (in case of connected bases). In both cases, the attraction is strongest
perpendicular to the PNA strand, negative tangential to the strand and negative in
the backward direction. The exact definition of the attraction reads:

FH
ij = aH

ij ω
R(rij) 〈nij, nik〉 (4.15)

where k is the non-nucleic bead bonded to i. Appart from this, the interaction is
described by the potential for A−A, no matter which nucleotides interact.
We tested these interactions for both representations of the PNA molecule. We
initialized a system with a micelle of 22 surfactants and two PNA strands—one
containing only bases of type A, the other only bases of type B—in its vicinity.
In all scenarios, both PNA strands first attached to the micelle and then diffuse
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on its surface eventually feeling their vicinity. Actual hybridization occurred only
in the case of the undirected attraction—no matter which PNA representation we
used. The problem with directed attraction, in the way we implemented it, is that
the bonds between bases and backbones arrange radial to the micelle. Thus, two
strands are usually outlaid perpendicular to these bonds, and the attractive force
between the strands is therefore zero.
Using undirected attraction, we achieved more promising results. However, only
in the case of connected bases (PNA representation II), we could observe a proper
alignment of the complementary strands (see figure 4.27). With the parameters
we used, 4.6% of the simulated time, we found a proper base pairing between the
complementary strands. By fine tuning the attraction parameters, however, we
expect to achieve a far more reliable hybridization.
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Figure 4.27: Distances between complementary bases of two attracting PNA strands.
Between t = 10τ and t = 40τ we find a hybridization between the two strands (red
lines). Between t = 55τ and t = 70τ the strands change their orientation and align
vice versa, but in this case, the base pairing is less significant. Proper alignment of
the two strands only occurs between t = 9τ and t = 12τ .

For the undirected attraction and interconnected bases, we compared hybridization
of PNA templates in water opposed to the micellar surface. It turned out, that the
strands never hybridized properly in water. Due to the hydrophobic nature of the
backbone, the backbone is more tangeld then at the surface of the micelle (compare
the configuration of PNA in figures 4.24 (a) and (d)).
The problem we encountered with undirected attraction is the following: In the real
system, only two bases can align to each other (at least in the Watson-Crick pairing).
Once aligned, the hydrogen bond is saturated and no other nucleotide can hybridize.
Undirected forces, on the other side, behave more like Coulomb forces: several
complementary bases can be attracted by a single nucleotide. This significantly
violates the biological mechanism and is the main reason that a proper alignment.
One possibility to overcome this problem is to introduce explicit hydrogen bonds in
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addition to the attractive force: when two complementary bases approach each other,
a bond is formed with a relatively high probability. A backward reaction breaks this
bond with the same probability and allows to overcome temporary misspairing of
the strands. During this reaction, the bases actually change their type from an
unbonded to a bonded state. By making only unbonded bases attractive, it seems
possible to prevent the discribed disadvantages of undirected attraction. Further
simulations have to be performed using this mechanism.

Another difficulty for proper alignment is the possibility of self-pairing of bases in
a single strand. While this might also be an issue in the real system, where PNA
can form loops in a single strand, it occurs much more likely in our current PNA
representation. Consider a template of with the nucleotide sequence A−A−B:
the first and third base are complementary and will attract each other forcing the
template to bend. The situation gets even worse, once explicit hydrogen bonds are
introduced, because the self-bonded strand will no linger attract a nearby second
strand. We could observe, that self-binding makes the hybridization effectively im-
possible, simply because it is more likely to be in the vicinity of a base of the same
strand than of another strand. So far, we prevented self-binding by restricting our
analysis to only a subset of possible templates—those where all bases within one
strand are of the same type. While this successfully prevents self-binding, it is cer-
tainly not satisfying. A better way to prevent self-binding, would be to introduce
stiffness in the PNA backbone: we can increase the potential energy of a strand,
when it is twisted. Such bending potentials are common in MD simulations and
have already been used in DPD studies of phospholipids [61].

Polymerization

Polymerization is the reaction, by which hybridized PNA dimers connect to longer
oligomers and eventually form a complementary copy of the whole PNA template.
So far, we modeled polymerization only for the second representation of PNA, as it
was the only one for which we achieved reliable hybridization.

We model this polymerization reaction straight forward with the synthesis

A + A −→ A−A (4.16)

B + B −→ B−B (4.17)

We restrict the maximal number of bonds per base bead to 3 to prohibit the forma-
tion of branches.

We compared two implementations of this reaction: in the first scenario, we set
the spontaneous reaction rate to 0.1 in a reaction range of 1.0rc. In the second
scenario, we set the spontanous rate to 0 and declared the complementary base as
catalyst with catalyst rate 1.0 in a range od radius 0.5rc. The latter implementa-
tion is intented to increase the reliability of PNA replication, as the probability of
polymerization depends on proper alignment. However, we could not find significant
differences between the two implementations. This might be due to the fact, that
actual hybridization happened so far only for very short times.
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4.4.5 Division

The last step in the life cycle of the Los Alamos bug is the fission of the grown
organism into two daughter cells. With the parameter set we used, this fission
process is generic for all growth scenarios.
To study the division kinetics, we initialize the system with a spherical micelle of
20 monomers and supply single amphiphiles to the system. The micelle grows by
incorporating monomers, until—at an aggregation number around 35 monomers—
the spherical shape becomes unstable and the micelle starts to elongate into a rodlike
structure. Elongation continues until at aggregation numbers between 50 and 60 the
ratio of long to short axis exceeds 2:1. A gap forms in the center of the micelle and
initiates a fission process, after which the micelle has dublicated. Daughter micelles
have an aggregation number between 25 and 30.
In the scenario of the Los Alamos bug, monomers are not supplied contineously but in
spurts. We simulated the fission scenario with a system initiallized with one micelle
of 15 monomers, 4 to 8 sensitizer beads in its interior and the reaction and particle
exchange described in section 4.4.3, but without genetic template. We found that
the division is still similar to the one outlined above: the intially spherical micelle
elongates and splits into two spherical daughter cells, once the critical axis ration
exceeds 2:1. In our experiments, the incorporation of a single precursor droplet
already resulted into division.
We could observe several problems involved in the fission process, that might also be
issues in the real system. One issue is the equal distribution of sensitizers between
the two daughter cells: using only 4 sensitizers, we observed fission results, where one
micelle hosted all sensitizers, the other one had no sensitizers. This is an example of
a failed reproduction, as only one daughter cell is able to reproduce further. In our
simulation, the “infertile” daughter cell continued to incorporate precursors, thereby
reducing the amount of accessible precursors for the “fertile” daughter cell.
The equal distribution of PNA strands is a second issue in the life cycle of the
Los Alamos bug. We performed simulations with a system of 20 surfactants, 4
sensitizers and two PNA strands of 4 A-bases. Using only equal bases prevented
the hybridisation of the strands on the surface of the micelle. In our simulations,
we could never observe, that the two strands are on the same micelle, whereas the
other micelle lost its genome. However, we could observe the problem that a single
PNA strand connects the two daughter cells after an otherwise successful division,
resulting in “’Siamese twins’.
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Discussion

In this work we have applied the simulation method dissipative particle dynamics
(DPD) to micellar systems in the context of protocellular scenarios. We have re-
ported relevant results of equilibrium micellar systems, obtained from calculations
of formal reaction kinetics. We calibrated the length and time scale of DPD to the
physical scales of a real systems (sodium heptylsulfate). We could show, that DPD
operates on appropriate length and time scales to analyse micellar kinetics.
We pointed out strategies to calibrate the DPD interaction parameters to system
parameters obtained from the equilibrium calculations. However, we have not been
able to calibrate our system in the given time. Our model is therefore a toy model,
that catches some features of micellar systems cannot reproduce all relevant as-
cepts of the real system. In our simulation, we find the aggregation of surfactants
into spherical micelles with typical aggregation numbers between 25 and 35 sur-
factants. However, we could not model the dissociation of single surfactants from
supramolecular aggregates. As a consequence, we cannot obtain realistic micellar
size distributions with the coexistance of micelles and monomers. Therefore, some
of the results obtained from simulations are clearly artefacts of the parameters used.
We applied our model to two scenarios from the early life and protocell literature:
the Lipid World and the Los Alamos bug. While both of them consider micelles
as embodiments for proto-organisms, they substantially differ in the way, micellar
growth and division—necessary conditions for the replication of the cell—is achieved.
In the Lipid World scenario, micelles grow by incorpotation of individual surfactants
synthesized from precursors due a catalytic reaction enhanced by nearby surfactants
in the micellar phase. The Los Alamos bug, on the other side, grows by incorporating
droplets of precursors, that are transformed into surfactants by light energy in the
interior of the micelle.

5.1 Micellar kinetics

In our simulations, we observed growth and division of micelles for both systems.
However, we have to discuss the impact of model artefacts on the outcome of our
simulations. Doing so, we obtain evidence that only the kinetic pathway of the Los
Alamos bug—incorporation of precursors in spurts— is likely to allow growth and
division of micelles. Our argument is based on formal reaction kinetics based on the
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Becker-Döring scheme (section 2.2.2).
We consider a micelle SN in equilibrium size (aggregation number N). If we drive
this system out of equilibrium, growth of the micelle happens if and only if the
inflow of surfactants into the micelle is greater than the outflow of monomers that
dissociate, otherwise the micelle could respond to every incorporation of precursors
with the dissociation of another monomer to maintain its equilibrium size. As the
dissociation rate of monomers depends only on the stability of the micellar aggregate,
not on the surfactant concentration in bulk phase, we assume that the equilibrium
rate constant k− also applies for the non-equilibrium system. The inflow consists of
two seperate steps: synthesis and incorporation.
For the Lipid World, we assume that the synthesis is the rate limiting factor and
treat association as an instantanious process. With this assumption, inflow and
outflow reduce to

X
kX−→ Sn

k−−→ S (5.1)

where kX is the kinetic constant of precursor synthesis and k− the dissociation rate
of monomers. The condition that the inflow must be higher than the outflow gives:

kX [X] > k− ⇐⇒ [X] >
k−

kX

(5.2)

We can now estimate the necessary minimal precursor concentration to drive the
micellar system out of its equilibrium. Table 2.1 lists dissociation rates for several
sodium alcylsulfate surfactants. More values can be found in [25]. All of them lie
inbetween 6× 104s−1 and 1.32× 109s−1, whereby the value is bigger the shorter the
length of the hydrocarbon chain, as their smaller hydrophobic effect results in less
stable micelles. We choose 1× 104s−1 as a lower bound for the dissociation rate.
Bachmann et al. [3] measured the catalytic production rate of sodium caprilate from
ethylcaprilate in the presence of caprilate micelles. They estimated the bimolecular
rate constant of 0.19M−1s−1. Let us assume that this is a representative value for
comparable catalytic reactions. To be conservative, we choose kX = 1M−1s−1. Using
equation 5.2, we find [X] > 104M . To illustrate how ridiculous this concentration
value is, we mention that water has a concentration of approximately 55M—thus,
our precursor would need to have less than 1/20 of the molecular volume of water,
to obtain such high molar values. Even then, the precursor would be pure, not in
aqueous solution.
All estimations in the previous calculation have been conservative, thus even higher
precursor concentrations would be needed. The weak point in this calculation is
maybe the procurser synthesis rate, that might differ for other reactants. Thus, we
repeat the calculation above and solve it for kX to obtain the necessary reaction
rate for more realistic precursor concentrations. For concentrations between 0.01M
and 1M we obtain necessary minimal synthesis rates kX between 103M−1s−1 and
106M−1s−1.
The situation might be improved for other types of surfactants (e. g. phospholipids)
that form more stable aggregates so that their dissociation rate k− is smaller. Further
calculations on this could be done for several kinds of surfactants. However, the
above calculations render the micellar growth scenario proposed in the Lipid World
highly inprobable. For most reasonable prebiotic scenarios, only a minor fraction of
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surfactant will be micellized. The inheritable potential of a compositional genome
based on micelles is jeopardized by the high rates of monomer exchange with the
bulk phase. The situation is even worse, if one further takes the slow relaxation
time τ2 into account (see section 2.2.2): the lifetime of typical micelles, after which
it dissociates into monomers, is inbetween milliseconds and minutes. That said,
we can only come to the conclusion that the Lipid World much likely resembles a
well mixed reaction system with the occasional formation of micelles. While these
micelles are likely to govern the overall reaction rate due to their catalytic effect,
it is unlikely that they are able to store inheritable information. Thus, in terms
of information, little is achieved by the organizational complexity of the micellar
system.
Let us repeat the above considerations for the growth scenario of the Los Alamos
bug. Again, the limiting factor of micellar growth is the production rate of new
surfactants and we can neglect the association rate. This time, however, to neglect
the incorporation is not a simplifaction of the real kinetics, because we can control
the surfactant turnover by the light energy to which we expose the system—that
is, we can trigger the reaction once the micelle incorporated enough precursors, no
matter how fast this process happened.
The effective turnover of surfactant precursors into new surfactants is influenced by
several processes: diffusion of the precursor towards the sensitizer, electron transport
from the sensitizer onto the precursor, cleavage of an ester bond in the precursor,
and others. Bankö and Rasmussen estimate a maximal production rate between 104

and 107M−1s−1 [62] for the bimolecular reaction

precursor P + sensitizer X −→ surfactant S + sensitizer X (5.3)

Apart from the significantly higher reaction rate, the precursor is not in solution but
concentrated in the interior of the micelle, thus [P ] is supposed to be in the range
of 1M . By increasing the number of precursors inside the micelle, one can increase
the overall turnover. Thus, the turnover rate is expected to exceed the dissociation
rate. Apart from rate considerations, the hydrophobic loading of micelles stabilizes
their shape. Before the transformation of precursors, the micelle is in its equilibrium
size. This size is greater, because the hydrophobic core increases the radius of the
assembly, thereby allowing more amphiphiles to surround it. Once new surfactants
are synthesized, the assembly rearranges to a shape that allows most surfactants to
anchor at the surface of the hydrophobic core. Similar phenomena are well known
in the study of detergents. This effect would even stabilize rodlike shapes until all
precursors are transformed. When this happened, the aggregate looses its stability
and will dissociate into several micellar aggregates.

5.2 Lipid World

Despite the problems that the calculations of the last paragraph impose on the
Lipid World theory, we discuss the implications of our simulation results. These
results affect the Lipid World theory for systems whose growth kinetics are accu-
rately described by Lancet et al.—i. e. where monomer dissociation is small. As we
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have pointed out (section 1.1), domain formation is the main feature not taken into
account by the mathematical model of Segré et al.

In section 4.3 we modeled a minimal system of two cross-catalytic amphiphiles with
our extended DPD model. For different repulsion parameters between unlike am-
phiphiles, we measured the local and global heterogeneity on the basis of the Shannon
information of amphiphile distribution. Domain formation in our simulations could
be attributed to reduced attraction between unlike surfactant tails (section4.3.2).
This is in good aggreement with the theory: in experimental work of Baumgart et
al. [12] domain formation is due to reduced van-der-Waals forces between kinked
and outstretched hydrocarbon chains. Thus, our model qualitatively captures the
expermiental results. It is interesting to mention, that the GARD model of Segré et
al. [6] assumes equal tails for all surfactants and only distinguishes head groups of
the molecules. However, a straightforward generalization of the GARD model that
accounts for differences in the surfactant tails is imaginable, and there is no reason
to assume that this generalization would affect the general findings of Segré et al.

How domain formation affects the predictions of the GARD model can be most
clearly seen in section 4.3.2: the fission of the grown micelle occurs along the interface
between two domains. After this divison, we find two daughter cells, each one holding
one of the two cross-catalytic amphiphiles. Thus, if fission along a domain boundary
occurs, each cell can contain only a part of the molecules that form the catalytic
cycle and the compositional genome is spread over several protocells. However, as
long as every single surfactant type can act as a catalyst on its own, the cells can
still produce the “missing” components of the catalytic cyle.

5.3 Los Alamos bug

In section 4.4, we used our extended DPD model to simulate the Los Alamos bug. In
our model, the minimal protocell consists of surfactants, precursors, sensitizers and
PNA information carriers. We analyzed several aspects of the whole life cycle of the
self-replicative system. Self-assembly and growth of the micellar organism has been
achieved with interaction parameters similar to those used in previos experiments.
Likewise, fission of the assembly followed the outcome of former simulations.

We studied the incorporation of precursor supplied by particle exchange. It was
found that precursors most likely aggregate into droplets before they are incorpo-
rated into the micelle. Therefore, the amount of precursor inside the micelle grows
in spurts rather than continuously. This suggests that the replication mechanism of
the protocell might even work, when light energy is supplied continuously. In this
case, control of the light exposure would not be necessary to regulate the replication.

We further studied the genome replication (hybridization and polymerization) of
the Los Alamos bug. Due to the very simplistic representation of nucleotides by
point particles, proper hybridization cannot be achieved easily. Using undirected
attractive forces, we could achieve proper alignment only for less than 5% of the
simulated timespan (We expect, however, that the reliability can be imporved by
fine tuning the interaction parameters).

One problem we encountered with undirected attraction is the following: in the
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real system, only two bases can align to each other (at least in the Watson-Crick
pairing). Once aligned, the hydrogen bond is saturated and no other nucleotide can
hybridize. Undirected forces, on the other side, behave like Coulomb forces: several
complementary bases can be attracted by a single nucleotide. This significantly
violates the biological mechanism and is the main reason why proper alignment fails
in our simulations. One possibility to overcome the problem is to introduce explicit
hydrogen bonds in addition to the attractive force: when two complementary bases
approach each other, a bond is formed with a certain probability. A backward
reaction brakes this bond with the same probability, allowing to overcome temporary
missparing of the strands. During this reaction, the bases actually change their type
from an unbounded to a bounded state. By making only unbounded bases attractive,
it seems possible to prevent the described disadvantages of undirected attraction.
Further simulations have to be performed using this mechanism.

Another difficulty to proer alignment is the possibility of self-pairing. While this
might be also an issue in the real system, where PNA can form loops in a single
strand, it occurs much more likely in our model, due to the current PNA represen-
tation. Consider a template with the nucleotide sequence A−A−B: the first and
third base are complementary and will attract each other forcing the template to
bend. The situation might get even worse, once explicit hydrogen bonds are intro-
duced, because the self-bonded strand will no longer attract a nearby second strand.
We could observe that self-binding makes the hybridization effectively impossible,
simply because it is more likely to be in the vicinity of a base of the same strand than
of another strand. So far, we prevented self-binding by restricting our analysis to to
only a bsubset of of possible templates—those where all bases are within one strand
are of the same type. While this successfully prevents self-binding, it is certainly not
satisfying. A better way to prevent self-binding, would be to introduce stiffness in
the PNA backbone: we can increase the potential energy of a strand that is twisted.
Such bending potentials are common in MD simulations and have already been used
in DPD simulations of phospholipids [61].

In a later study, we want to couple the functioning of the sensitizer with the genomic
information of the PNA: the catalytic rate will depend on the amount and type of
nearby bases. Applying this coupling, the PNA will actually affect the growth rate
of the protocell—thus turning the template into a real genome.

Concerning the dynamics of the whole system, we could make the following ob-
servations: one issue of successful protocell replication is the equal distribution of
sensitizers between the two daughter cells. Using too few sensitizer molecules (4
sensitizers in a micelle of aggregation number 22), we ended up with a fission result,
where only one daughter micelle hosted all sensitizers, whereas the other one hosted
none. In our simulation, the infertile daughter cell continued to incorporate precur-
sors, thereby reducing the amount of accessible precursors for the fertile daughter
cell. When the infertile daughter cell grows, it looses its spherical shape as it becomes
more and more droplet-like. Once it has less surfactants than are necessary to cover
its surface, it becomes possible that it fuses with another, possibly fertile micelle.
Thus, although the distribution of of sensitizers might not be reliable, products of
failed divisions are available as nutrients for a later fission process.
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The equal distribution of PNA strands is a second issue in the life cycle of the Los
Alamos bug. We could observe the problem that a single PNA strand connects
the two daughter cells after an otherwise successful division, resulting in “’Siamese
twins’. The future of such twins mainly depends on the ability of PNA to leave one
of the aggregates to get incorporated completely in the other one. With our model
parameters, however, the amphiphilic character of PNA is to strong to allow the
PNA strand to leave the micellar surface.
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Appendix A

Implementation

The underlying mathematical model of DPD is a stochastic differential equation
of Newtons third law (3.2). The basis of the computer simulation is therefore a
numerical integrator of this equation. However, the special nature of the problem
defines boundary conditions for reasonable algorithms and guides to specializations
of the integration scheme for performance enhancements. Second, the stochastic
nature of the differential equation has to be taken into account.

A.1 The Particle Space

A.1.1 Boundary Conditions

Our DPD implementation allows simulations in two and three dimensional space.
Although periodic boundary conditions are mainly used in DPD simulations, the
implementation allows also to study no flux boundary conditions. To provide this
flexibility without messing up further calculations, we introduce the notion of posi-
tions and directions. Both are floating point vectors with two or three coordinates,
respectively. By destingishing between them, we can hide the care for boundaries
in the calculations: boundary conditions affect positions, but not directions. Each
particle has a position. Its velocity and acceleration are directions.
Directions are ordinary two or three dimensional vectors for which we define common
vector arithmetics:

Dir±Dir → Dir (A.1)

Scalar ∗Dir → Dir (A.2)

< Dir, Dir > → Scalar (A.3)

length(Dir) → Scalar (A.4)

Positions are locations in space. They are related to directions by the following
operations:

Pos + Dir → Pos (A.5)

Pos−Dir → Pos (A.6)

Pos− Pos → Dir (A.7)
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For periodic boundary conditions, operations A.5 and A.6 adjust the resulting vector
sum to fit into the periodic boundaries in a straight forward way:

x → x mod size x

y → y mod size y

z → z mod size z

Operation A.7 performs the so called minimal image condition: For two given po-
sitions i and j, the direction from i to the closest of all periodic images of j is
returned.
For no flux boundary conditions, the operations A.5 and A.6 mirror the intermedi-
ated result at the edge. For one coordinate the adjustment reads:

x→


−x if x < 0

2 ∗ size x− x if x ≥ size x

x else

In this case, A.7 returns the common difference i− j as direction.
The distinction between positions and directions completely hides the topology of the
space. Further calculations can be performed without any respect to the underlying
topology.

A.1.2 Partitioning the Space

As each particle has 4 to 6 degrees of freedom, the observed systems usually have
a very high dimension (e.g. 486000 for a simulation published in [13]) The most
timecritical part is the calculation of intermolecular forces.

The naive approach

A straight forward implementation of formula 3.3 results in the following algorithm
– written in the python programming language as pseudo code:

for i in space :

i.force = 0

for j in space :

j.force += physics.pairwise_force(i,j)

The runtime of both outer and inner loop are O(N) = O(C ∗ S) where C specifies
particle concentration and S the size of the system. Hence, the overall performance
of the naive approach is O(N2) = O(C2 ∗ S2)

Profit from cutoff

Taking into account the cutoff radius of the pairwise potential functions (equation
3.7) leads to an algorithm that is quadratic in particle concentration,but only linear
in the number of particles. The particle space is partitioned into a grid where each
field has a size slightly greater than the cutoff distance. Each field can hold an
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Figure A.1: The reaction space is partitioned into a grid with field size slightly
above the cutoff distance. Interactions only occur between particles within this
cutoff radius (dashed circle). Therefore, only particles within a Moore neighborhood
(white box) have to be considered. In this particular example, only 24 instead of
122 particles have to be checked as potential interaction partners. 7 of them are
actual neighbors.

arbitrary number of references to particles in a list. Figure A.1 shows an example of
a grid configuration. During initialization, neighbors are determined for every field
(with respect to the choosen boundary conditions). This information is used to speed
up the lookup of particle neighborhoods. To determine partners for interaction, the
algorithm only needs to consult the Moore neighborhood of a particle (9 fields in 2
dimensions, 27 fields in 3 dimensions):

for i in space :

i.force = 0

for j in space.neighbors(i) :

if (i.pos-j.pos).length() < physics.cutoff :

i.force += physics.pairwise_force(i,j)

Thereby, space.neighbors is an iterator that successively yields all particles in the
Moore neighborhood of a particle. The performance of the outer loop is O(N),
whereas the one of the inner loop is only O(C). As C = N/S, the total performance
of this algorithm is O(C ∗ S) = O(N2/S). This procedure is commonly known as
linked cell algorithm in MD simulations [50].

Profit from Symmetry

All DPD forces are central: Fij = −Fjifor every two particles i and j. This re-
striction can be used to further reduce the computational efford. In the previous
algorithm, the force between every two particles was calculated twice, once for (i, j),
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once for (j, i). Instead of iterating first over each particle and second over each of
its neighbors, one can build the calculation upon particle pairs:

for i in space :

i.force = 0

for i,j in space.pairs(i.field) :

if (i.pos-j.pos).length() < physics.cutoff :

f = physics.pairwise_force(i,j)

i.force += f

j.force -= f

In this algorithm, space.pairs defines an iterator that acts in the following way:
we first iterate over all particles. For every particle (in the following called center
particle), we first iterate over its neighbors within the same field. However, because
of the symmetry condition, we only need to iterate over those neighbors, which are
further behind in the list that holds the particles of one field. Second, we iterate
over all particles in half of the Moore neighborhood. Figure A.2 shows the reduces
area that has to be taken into account by this improved iterator.

Figure A.2: By taking advantage of symmetric forces, one can reduce the compu-
tational efford further: Search of interaction partners can then be restricted to the
white region in this figure. Doing so saves additional 50% of the calculations.

For each particle class the simulation we provide a seperate grid. This highly in-
creases particle lookup when search possible partners for interaction. Espacially as
water is not a reactant and most of the space is filled by water particles, this in-
creases the computational speed of reactions by approximately 80% for the systems
we analyzed.
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Keeping track of neighbors

Although not implemented in our current work, we want to briefly discuss an alter-
native strategy to the linked cell algorithm, called the linked list algorithm. Following
this procedure, the particle space is not partitioned. Instead, a list of particle pairs
within the interaction range is repeatedly calculated. Basically, this leads back to
the naive algorithm. However, the recalculation of the neighbor-list can be per-
formed less often than the position/velocity update of the particles (In atomistic
MD, this recalculation is usually done only every 100 timesteps) [50]. The linked
list algorithm is easier to implement than the linked cell algorithm, however, the
performance of the latter is better—especially then the box size is increased.
Nowaday high-end MD simulation packages combine both algorithms in a smart
fashion: the binning of particle space improves the performance of linked list build-
ing. On the other hand, the list reduces distance calculation, where particle distance
exceeds the cutoff, although particles may be in adjacent boxes. The ideal average
improvement of the combined algorithm compared to the linked cell algorithm is
determined by the ratio of sphere diameter to cube size (65% in two dimensions,
85% in three dimensions).

A.2 Numerical Solvers

In its original form, the DPD equations of motion (formula 3.2) have been solved
with a slightly modified Euler integrator [35]. In the following years, much work has
been done by R. D. Groot and P. B. Warren [38], K. E. Novik and P. Coveney [63],
and especially I. Vattulainen and coworkers [64, 65, 66] to find better integrators for
the special set of equations araising in DPD simulations.

A.2.1 Accounting randomness

Before we discuss possible integration schemes for the DPD equations of motion
(3.2,3.5-3.6), we need to care about the stochastic term ξ in the calculation of FR.
What needs to be done is relating the magnitude of the random force to the choosen
step width ∆t of the numerical solver. Otherwise, the mean variance of the random
variable is not preserved and becomes bigger, the smaller we choose ∆t as more
intermediate steps are performed to simulate a given time interval. Further expla-
nations on how ξ and ∆t are exaclty related can be found in [38], where the random
walk process introduced by ξ is related to the mean square replacement of particles.
Here, we only mention that the factor with which ξ and therefore FR need to be
adjusted equals to ∆t−1/2. The random force then reads:

F̂R
ij = σωR(rij)ξijnij∆t−1/2 (A.8)

A.2.2 Basic Verlet integrator

Due to the fact, that the second derivate d2r/dt2 is given explicitely in equation 3.2,
the Verlet integrator (which is the standard integrator in atomistic MD simulations)
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seems to be a good candidate for the numerical integration. Its scheme can be
derived by two Taylor expansions around ri(t + ∆t) and ri(t−∆t), respectively:

ri(t + ∆t) = ri(t) + ∆t
dri

dt
+

1

2
∆t2

d2ri

dt2
+

1

6

d3ri

dt3
+ O(∆t4)

ri(t−∆t) = ri(t)−∆t
dri

dt
+

1

2
∆t2

d2ri

dt2
− 1

6

d3ri

dt3
+ O(∆t4)

Adding these two Equations and substituting d2ri/dt2 = ai yields the classical Verlet
integrator [67]:

ri(t + ∆t) = 2ri(t)− ri(t−∆t) + ∆t2ai(t) + O(∆t4) (A.9)

As one can see, this integrator is a forth order algorithm, but involves only slightly
more efford than the somewhat oversimplified Euler scheme. To be precise, unlike
other higher order numerical integrators (e. g. Runge-Kutta) the Verlet integrator
uses only one function evaluation per time step.
A disadvantage of the basic integration scheme A.9 is that it only computes positions
but no velocities. If we are, for example, interested in the temperature of the system,
we need to calculate particle velocities afterwards. There are, however, variants of
the Velocity algorithm, that compute both particle positions and velocities during
their integration step.

A.2.3 Velocity Verlet integrator

It has been pointed out, that the Verlet integrator cannot accurately approximate
the DPD equations of motion, because the force acting on a particle pair depends not
only on their (relative) position, but their velocities, too. There have been proposed
several modifications to circumvent this limitation. The one that has become sort
of standard for DPD simulation has been developed by Allen and Tildesley [68] and
was introduced into DPD by Groot and Warren [38]. This algorithm is similar to
the so-called leapfrog variant of the Verlet algorithm, as velocities of the sytem are
calculated at timesteps (t + λ∆t) inbetween the positional update (t) (see figure
A.3):

ri(t + ∆t) = ri(t) + ∆tvi(t) +
1

2
∆t2ai(t) (A.10)

ṽi(t + λ∆t) = vi(t) + λ∆tai(t)

ai(t + ∆t) =
1

mi

Fi(ri(t), ṽi(t + λ∆t))

vi(t + ∆t) = vi(t) +
1

2
∆t(ai(t) + ai(t + ∆t))
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t+3dtt+   dtλ t+(   +1)dtλ λt+(   +2)dt

ri vi ri rivi vi

t t+dt t+2dt

Figure A.3: Schematic view of the leapfrog Velocity Verlet algorithm: For the cal-
culation of interaction forces, positions and velocities are evaluated at “interwoven”
timesteps (see update schemeA.10).
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[6] D. Segré, D. Lancet, O. Kedem, and Y. Pilpel. Graded autocatalysis replication
domain (GARD): Kinetic analysis of seelf-replication in mutually catalytic sets.
Origins of Life and Evolution of the Biosphere, 28:501–514, 1996.
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Die Beiträge können gegen einen Selbstkostenpreis (ca. 10 EUR pro Exemplar)
beim Institut für Umweltsystemforschung, Universität Osnabrück, 49069 Osnabrück
bestellt werden.

Alle folgenden Beitrge sind herunterzuladen unter http://www.usf.uos.de/usf/beitraege/.

22. Horst Malchow (Hrsg.): Modellbildung und -anwendung in den Wissenschaften
IV.
Januar 2001.

23. Horst Malchow (Hrsg.): Modellbildung und -anwendung in den Wissenschaften
V.
August 2001.

24. Kai Leßmann (Diplomarbeit): Probabilistic Exposure Assessment. Parameter
Uncertainties and their Effects on Model Output. November 2002.

25. Frank M. Hilker (Diplomarbeit): Parametrisierung von Metapopulationsmod-
ellen.
März 2003.
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sttzung fr die Gewässergütebewirtschaftung im Einzugsgebiet der Elbe. Novem-
ber 2005.

32. Frank M. Hilker and Frank H. Westerhoff: Control of chaotic population dy-
namics: Ecological and economic considerations. November 2005.

33. Harold Fellermann (Diplomarbeit): Micelles as containers for protocells. Dezem-
ber 2005.

ISSN 1433-3805


